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➢ conventional role of nuclei

➢ but in some cases

 majority carrier of the atomic mass

 carries the positive electric charge

 negligible scattering cross section:

(nucleus) / (atom) =
     (Z m/M)2  ≈ 10-7

         (Thomson)

 dynamics of the nucleons results
      in well-defined resonances with

 nuclear resonant scattering may dominate

 nuclear resonances are extremely narrow

(nucleus) / (atom) ≈ 103

Γ / E  ≈ 10-12

The two-faced nuclei:



The nucleus as a probe:

➢ The nucleus is not a point charge

 internal dynamics

 volume
 spin
 quadrupole moment

⇒ nuclear transitions

⇒ isomer shift
⇒ magnetic level splitting
⇒ quadrupole splitting

recent reviews of Nuclear Resonant Spectroscopy:
       E.Gerdau and H.deWaard, eds., Hyperfine Interact. 123-125 (1999-2000)
       W.Sturhahn, J.Phys.: Condens.Matt. 16 (2004)
       R.Röhlsberger (Springer Tracts in Modern Physics, 2004)
       W.Sturhahn and J.M.Jackson, GSA special paper 421 (2007)

➢ The nucleus is not at rest

 energy/momentum conservation

 velocity in gases
 vibrations in solids

⇒ recoil energy shift

⇒ Doppler shift
⇒ phonon excitation/annihilation,
       recoilless absorption
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Scattering channels:

initial state     →     intermediate state     →     final state

||||

lattice nucleus & core electrons

incoherent coherent inelastic coherent elastic
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Incoherent scattering:

➢ SRPAC – Synchrotron Radiation based Perturbed Angular Correlation

 introduced in 1996
          A.Baron et al., Europhys.Lett. 34 (1996)

 measures level splitting of excited nuclear state

 few applications using high-energy nuclear transition in 61Ni

experimental setup

I.Sergueev et al., Phys.Rev. B 73 (2006)
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Incoherent scattering:

➢ NRIXS – Nuclear Resonant Inelastic X-ray Scattering
             (a.k.a. NRVS and NIS)

 introduced in 1995
         M.Seto et al., Phys.Rev.Lett. 74 (1995)
         W.Sturhahn et al., Phys.Rev.Lett. 74 (1995)

 local vibrational density of states

 applications include determination of sound velocities,
         elastic, and thermodynamic properties
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Excitation of the 57Fe nuclear resonance:

SMS

NRIXS

fixed, isolated nucleus

14.4125 keV

4.66 neV ∣e〉

nucleus & electronic interaction or external fields

14.4125 keV E

S(E) ≈μeV

...
...

nucleus & simple
         lattice excitation

14.4125 keV E

S(E)
Mössbauer absorption

phonon side band

∣g〉

≈10meV

∣e,3/2〉

∣e,1/2〉
∣e,-1/2〉
∣e,-3/2〉

∣g,-1/2〉

∣g,1/2〉

∣g〉∣0〉
∣g〉∣1〉
∣g〉∣2〉

∣e〉∣0〉
∣e〉∣1〉
∣e〉∣2〉
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Cross section for nuclear excitation:

iron metal:

W.Sturhahn, J.Phys.: Condens. Matter 16 (2004)

~ nuclear resonant cross section

~ width of the nuclear excited state

~ probability density for phonon excitation

E

S(E)
on resonance:

off resonance:

(0.1 < f < 0.9)

~ Debye energy

(0) = 560 
pe

(E) ≈ 0.0002 
pe


pe

 ~ photoelectric cross section
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The time discrimination trick:

The excited nucleus decays incoherently with its natural life time .

 = ℏ / 

141 ns  for 57Fe

time

log(intensity)

nonresonant scattering events
                 (100 MHz)

measured events (100 Hz)

detector noise (0.01 Hz)
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NRIXS, bcc-Fe:

✰ the partial phonon DOS is extracted
                    from the spectrum

phonon annihilation phonon creation

W.Sturhahn et al., Phys.Rev.Lett. 74 (1995)

W.Sturhahn,
       Hyperfine Interact. 125 (2000)

M.Hu et al.,
      Nucl.Instrum.Methods A 428 (1999)
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Interpretation of NRIXS spectra:

➢ NRIXS spectra directly provide the Fourier transform
         of the self-intermediate scattering function

➢ In the quasi-harmonic approximation the
        partial projected phonon density-of-states
           is obtained by a multi-phonon expansion

W.Sturhahn and V.G.Kohn, Hyperfine Interact. 123/124 (1999)
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Target applications:

➢ perfect isotope selectivity & complete suppression of nonresonant signals

➢ excellent sensitivity (1012 nuclei in the focused beam)

✰ proteins and other large molecules

✰ materials under high pressure

✰ nanostructures

P > 1Mbar
T > 2000K

57Fe in
myoglobin
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PHOnon Excitation by Nuclear Inelastic X-ray scattering

Software for the evaluation of
       Nuclear Inelastic X-ray Scattering Spectra

wolfgang@nrixs.net

Wolfgang Sturhahn



About PHOENIX:

➢  developed 1995 by W. Sturhahn at the APS

  incoherent inelastic nuclear resonant scattering
  explain first NRIXS experiments (Sturhahn et al. PRL 74, 1995)
  FORTRAN code implemented on Sun UNIX

➢  improved 1995-2010 by W. Sturhahn at the APS
  resolution function subtraction (1997)
  ported to Linux (2004)
  sound velocity treatment (2007)
  visualization support, version 2.0.0 (2009)

publications related to PHOENIX:
                             W. Sturhahn, Hyperfine Interact 125 (2000)
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➢  improved 2010-  by W. Sturhahn and NRIXS software

  inverse construction (DOS to spectrum), version 2.1.0 (2012)
  API for variable data input formats, version 2.1.0 (2012)



➢  partial phonon density-of-states extraction with Fourier-Log method
➢  consistency checks of moment and PDOS results
➢  optional deconvolution with resolution function

➢  addition of raw data sets including normalization

PHOENIX now supports:

➢  all Mössbauer isotopes

➢  flexible procedure for subtraction of elastic peak
➢  data normalization
➢  detailed balance, energy calibration, and moment calculation
➢  correction routine for limited-range spectra

➢  flexible extrapolation scheme for Debye sound velocity extraction
➢  aggregate compressional and shear sound velocities

➢  creation of energy scale from angle/temperature data
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➢  reconstruction of spectra from measured or theoretical PDOS
➢  calculation of various thermodynamic quantities from PDOS



More on PHOENIX:

➢  latest version, PHOENIX-2.1.3, released in 2014 

➢  can be obtained at  http://www.nrixs.com  –  no charge

  simple installation procedure for Unix and Mac OS X
  run-time graphics
  API for custom data input formats, e.g., SPEC or mda
  inverse calculations, i.e., NRIXS spectra from DOS

➢  has been used for data evaluation in numerous publications 
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➢  hands-on tutorials on PHOENIX

  Neutron and X-ray School, APS, 2000-2005
  Nuclear Resonant Scattering on Earth Materials, APS, 2005
  Class on NRIXS, Caltech, 2008
  Data Evaluation using CONUSS and PHOENIX, APS, 2012
  Nuclear Resonant Scattering Workshop, APS, 2014

➢  distributed under GPL, source code public, evaluations traceable 

http://www.nrixs.com/


Coherent elastic scattering:

➢ NBS – Nuclear Bragg Scattering

 introduced in 1985
          E.Gerdau et al., Phys.Rev.Lett. 54 (1985)

 uses (pure) nuclear Bragg reflections

 few applications due to need for single crystals

experimental setup

E.Gerdau et al., Phys.Rev.Lett. 54 (1985)

first Mössbauer spectrum using
            synchrotron radiation
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Coherent elastic scattering:

➢ GINRS – Grazing Incidence Nuclear Resonant Scattering

 introduced in 1991
          M.Grote et al., Europhys.Lett. 17 (1991)

 uses specular reflection off thin films with Mössbauer isotopes
 applications in magnetism of nano-structures

experimental setup

R.Röhlsberger et al., Phys.Rev. B 67 (2003)

study of spin structures

R.Röhlsberger et al., Phys.Rev.Lett. 89 (2002)
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Coherent elastic scattering:

➢ NLE – Nuclear Lighthouse Effect

 introduced in 2000
          R.Röhlsberger et al., Phys.Rev.Lett. 84 (2000)
 uses scattering by rotating sample containing Mössbauer isotopes
 few applications, difficult sample environment

experimental setup

R.Röhlsberger et al., Phys.Rev.Lett. 84 (2000)

imaging nuclear resonant scattering

R.Röhlsberger et al., Appl.Phys.Lett. 78 (2001)
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Coherent elastic scattering:

➢ SMS – Synchrotron Mössbauer Spectroscopy
             (a.k.a. NFS)

 introduced in 1991
       J.Hastings et al., Phys.Rev.Lett. 66 (1991)

 internal magnetic fields, electric field gradients, isomer shifts

 applications include magnetic phase transitions,
       determination of spin & valence states, and melting studies
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Origin of oscillations in time spectra:
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Signatures in SMS time spectra:

✰ single line:
     - isomer shift only

✰ two lines:
      - electric field gradient,
          quadrupole splitting
      - two sites with different
          isomer shifts

✰ many lines:
      - magnetic field
      - several sites with
          different line positions

Mössbauer spectroscopy SMS

line broadening, D
eff

 = 50
undisturbed line shape, D

eff
 = 1

effective thickness:
        D

eff
 = F

LM
 

0
  D

nuclei per area

resonant cross section

Lamb-Mössbauer factor

geometric thickness

Synchrotron Radiation Based NRS Techniques and Evaluation   —    22 California Institute of Technology



SMS and traditional MB spectroscopy:

SMS advantages
➢ intensity and collimation
➢ control of polarization
➢ micro-focusing

SMS challenge
➢ accessibility
➢ spectra less intuitive

ph/s/eV
ph/s/eV/sr
ph/s/eV/mm2

W.Sturhahn, J.Phys.: Condens.Matt. 16 (2004)

traditional Mӧssbauer (MB) spectroscopy

Synchrotron Mössbauer Spectroscopy (SMS)

Synchrotron Radiation Based NRS Techniques and Evaluation   —    23 California Institute of Technology



Interpretation of SMS spectra:

➢ Nuclear resonant contribution to the index-of-refraction

➢ Time spectrum

W.Sturhahn, J.Phys.: Condens.Matt. 16 (2004) 

➢ Mössbauer transmission spectrum
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COherent NUclear Scattering from Single crystals

Software for the evaluation of
             Synchrotron Mössbauer Spectra

wolfgang@nrixs.net

Wolfgang Sturhahn



About CONUSS:

➢  developed 1983-1986 by E. Gerdau and W. Sturhahn at
              the University of Hamburg

  coherent elastic nuclear and electronic Bragg scattering
  explain first NRS experiments (Gerdau et al. PRL 54, 1985)
  FORTRAN code implemented on IBM 360 mainframe (MVS-VM)

➢  improved 1986-today by W. Sturhahn and supported by
             the University of Hamburg (1986-1993),
             ESRF (1992),  APS (1992-2010),
             MPI-Halle (2012-2013)

  forward scattering (SMS a.k.a. NFS) added (1991)
  ported to Sun UNIX (1992)
  extended data handling capability (fitting) added (1996)
  ported to Linux and OS X (2004, 2011)
  grazing incidence scattering (GINS) added (2014)

publications related to CONUSS:
                             W. Sturhahn and E. Gerdau, Phys. Rev. B 49 (1994)
                             W. Sturhahn, Hyperfine Interact 125 (2000)
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➢  time spectra (SMS) and energy spectra (trad. Mössbauer spectr.)
➢  sample combinations
➢  time, energy, and angle averaging
➢  sample thickness distributions

➢  forward scattering, grazing incidence, and Bragg/Laue reflections
➢  no limitations by sample structure

CONUSS now supports:

➢  all Mössbauer isotopes

➢  combined hyperfine interactions
➢  distributions of hyperfine fields
➢  textures
➢  relaxation effects

➢  full polarization and directional dependences
➢  thickness effects

➢  comparison to experimental data, fitting and Monte Carlo sampling
➢  flexible assignment and grouping of fit/sampling parameters
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➢  latest version, CONUSS-2.1.0, just released 

More on CONUSS:

➢  can be obtained at http://www.nrixs.com  –  no charge

  simple installation procedure for Unix and Mac OS X
  enhanced fit capabilities
  run-time graphics
  Monte Carlo approach to find start-values,
      explore the parameter space, and smart parameter optimization
  support of grazing incidence geometry
  input file simplifications, manual

➢  has been used for data evaluation in numerous publications
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➢  distributed under GPL, source code public, evaluations traceable 

➢  hands-on CONUSS tutorials

  Data Evaluation using CONUSS and PHOENIX, APS, 2012
  SMS data evaluation using CONUSS, Petra III, 2014
  Nuclear Resonant Scattering Workshop, APS, 2014

http://www.nrixs.com/


Filtering methods:

 introduced in 1997
          G.V.Smirnov et al., Phys.Rev. B 55 (1997)

 uses pure nuclear Bragg reflection to create narrow-bandwidth x-ray

experimental setup velocity spectrum

G.V.Smirnov et al., Phys.Rev. B 55 (1997)

➢ SMs – Synchrotron Mössbauer source
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Reconstructive methods:

➢ TISRS – time integrated synchrotron radiation spectroscopy

 introduced in 2000
          C.L'abbe et al., Phys.Rev. B 61, 2000

 uses moving reference absorber and polarizer/analyzer setup

experimental setup integrated time spectrum

C.L'abbe et al., Phys.Rev. B 61 (2000)
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Reconstructive methods:

➢ exo-interferometric SMS

 introduced in 2004
          W.Sturhahn et al., Europhys.Lett. 66 (2004)

 uses x-ray interferometer to measure time dependent phase

schematic phase

W.Sturhahn et al., Europhys.Lett. 66 (2004)

energy spectrum
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Others:

➢ NRA-IXS – nuclear resonant analysis of inelastic x-ray scattering

 introduced in 1996
          A.I.Chumakov et al., Phys.Rev.Lett. 76 (1996)

 uses SMS as energy analyzer; measures meV resolved inelastic scattering

➢ TDI – time domain interferometry
 introduced in 1997
          A.Baron et al., Phys.Rev.Lett. 79 (1997)

 uses SMS for energy filter/analyzer; measures quasi-elastic scattering

➢ site-specific NRIXS

 introduced in 2003
          M.Seto et al., Phys.Rev.Lett. 91 (2003)

 combination of SRPAC and NRIXS to distinguish sites
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Brighter x-ray sources:

105

102

➢ LCLS timing:

➢ APS timing:

10 ms

time
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Brighter x-ray sources:

➢  X-ray Laser
  large number of photons per pulse
  ideal for pump-probe experiments
  complete transverse coherence
  efficient micro/nano focusing

➢  mitigating/enabling technologies
  improved high-energy resolution monochromators
  ultra-fast shutters
  APD area detectors
  nuclear filtering techniques

➢  Ultimate storage ring
  higher transverse coherence
  efficient micro/nano focusing
  small bunch separation possible
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Case study: timing for the APS-MBA

57Fe SMS time spectra of a typical mineral

➢  potential MBA timing modes

  red,
  green,
  blue,

48-27-1, singlets
24-54-2, doublets
16-81-3, triplets

➢  present-day timing mode

  black, 24-54-1, singlets
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Case study: timing for the APS-MBA

57Fe NRIXS relative intensity

➢  potential MBA timing modes
  black,
  red,
  blue,

47%, 48-27-1, singlets
72%, 24-54-2, doublets
78%, 16-81-3, triplets

➢  present-day timing mode
  square, 81%, 24-54-1, singlets



Final remark:

➢ Evolution of synchrotron based NRS techniques:
        not   “survival of the fittest”
        but   “adaptive improvement” and occupation of available “ecological niches”

➢ Ecological niche of NRS must be protected, e.g., by

  NRS users engaged in upgrade projects
  sufficient flexibility in storage ring timing modes
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➢ Adaptive improvement should consider

  development and maintenance of evaluation tools
  training of young scientists, e.g., in tutorials and workshops
  developments commensurate with goals of upgrade projects, e.g.,
        implementation of transverse coherence into NRS methodology
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