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1 License information

MINUTI-2.3.3 is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

MINUTI-2.3.3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Any use of results obtained using MINUTI-2.3.3 in related or unrelated publications has to be properly acknowl-
edged by reference to the name of the package, to the name of the developer(s), and to the NRIXS software site.

2 Getting started

The MINUTI (MINeral physics UTIlities) software is a collection of scientific applications to aid mineral physicists
to evaluate experimental p-V-T data (module seos), to calculate sound velocities from elastic constants (module
svec), to evaluate nuclear forward scattering melting spectra (module simx), to develop linear mixing models of
mineral assemblages (module smix), to perform background subtraction for a related set of XRD 2θ patterns (module
sbck), and to fit a general function including XRD patterns (module sfit).

Prior to using the program follow the instructions described in the installation guide. A MINUTI program in-
stallation produces the five executables sbck, seos, simx, smix, svec, and the graphical user interface (GUI) named
Minuti.app (MacOS) or minuti (linux or UNIX). For some linux types a desktop launcher named Minuti should
also exist.

The MINUTI programs can be run using either the GUI (the recommended method) or via command line interface
(CLI). Output files are the same for GUI and CLI versions – both use the same executables.

2.1 The GUI

This is the faster and for many users more intuitive way to interact with the MINUTI executables. Proceed as
follows

• MacOS
With Finder locate the Application folder into which the GUI Minuti.app was installed. This is either ’˜/Ap-
plications’ for a local install or ’/Applications’ for a system-wide install. Start the GUI by double-click on
Minuti.app but depending on the OS version you might have to defeat the Gate Keeper mechanism.
Defeating the Gate Keeper: right-click on Minuti.app to get pull-down menu; select open; acknowledge to
open.
Defeating the Gate Keeper on MacOS 10.12 and higher: double-click on Minuti.app; acknowledge that it can’t
be opened; select Apple -> System Preferences -> Security & Privacy -> General; at the bottom right click
open Minuti.app. The app might still be translocated by the security mechanism, so that some functionality
could be lost.
Preventing the translocation: quit Minuti.app; open Terminal.app; then type ’xattr ˜/Applications/Minuti.app’
or ’xattr /Applications/Minuti.app’; if you see the string ’com.apple.quarantine’ the app has been quarantined
and only runs in translocation mode; to lift the quarantine type ’sudo xattr -dr com.apple.quarantine ˜/Appli-
cations/Minuti.app’ or ’sudo xattr -dr com.apple.quarantine /Applications/Minuti.app’ which requires admin
privileges.
The best way to prevent translocation is the removal of the quarantine flag before installation: please see the
Installation Guide section 4.1.

• Linux or Unix
If a desktop launcher named Minuti was created during installation start that. Otherwise, open terminal
window and type ’minuti’ on the command line. If this fails the location of the MINUTI executables may
not be known permanently to your computer. Correct this by modification of the ’path’ setting in the login
resource file in your home directory, usually something like ’.bash profile’, ’.profile’, or ’.login’. If DIR
was the installation directory the directory DIR/bin should be part of the ’path’. You have to logout and
login again to update the ’path’ settings.
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Select MINUTI -> Show Examples from the menu at the top. A list of examples shows up in lower middle panel.
Select an item by left-click, then right-click to see a menu of options, select ’Open As Project’. Left-click on ’Run’
button on top right to run the example. The runtime output is displayed in the large center panel. A list of the
produced output files is shown as thumbnails on the lower left and as a list in the upper right panel. Tooltips
become visible after hovering for about one second over a GUI element. The input fields correspond to valid lines
of the standard input file (SIF) which are explained in sections 5, 6, and 8.

The GUI can be adapted to your visual and behavioral preferences: select Edit -> Preferences from the menu at
the top.

2.2 The CLI

Working with a CLI requires to open a terminal window first. Commands are typed text strings followed by
pressing the return key. Examples ready for use with the command-line-interface (CLI) are provided with the
MINUTI package. The location of the example directories depends on how the MINUTI was installed. Under
MacOS this is ’$HOME/Library/NRIXS/MINUTI/examples’ or ’/Library/NRIXS/MINUTI/examples’ for local or
system-wide installs, respectively. Under other Unix systems this is ’DIR/.NRIXS/MINUTI/examples’ where DIR
is the installation location if owned by the installer ($HOME is the default). If DIR is a system directory such
as /usr/local the examples are located in DIR/share/NRIXS/MINUTI/examples. Your computer system can only
access the MINUTI executables if the directory that they are located in is part of the ’path’ defined for your system
at the time of login.

Now enter the directory with the examples, e.g., by ’cd ˜/.NRIXS/MINUTI/examples/seos quartz’. You need write
permissions in the examples directory: type ’ls -ld’ and the output string should start with ’drwx’. If not you don’t
have sufficient permission, so just copy the whole directory to your desktop or home directory and the change to
that copy. Run the seos executable by typing ’seos’.1 The executable reads the input file in seos and the data file
quartz.dat, produces copious output in the terminal window, and creates verious output files. If your installation
supports visualization a display of some of the output appears on the screen.

The functionality of the MINUTI programs is adapted to your needs by changing the standard input files that
control the program flow. It is best to use the files in seos, in simx, and in svec, which can be found in the examples
folder, as blueprints. A detailed description of each executable’s purpose and their input and output files follows.

The MINUTI software contains three executables, each for a specific task. Calculation results depend on input
parameters specified in the standard input file (SIF). Ouput files are ASCII formatted with space or comma separated
columns of numbers. They are readily imported into plotting programs such as Grace and spreadsheets such as
OpenOffice or Excel.

In addition to output files with numerical results, each program creates a protocol file <prefix> ptl.txt with a list
of input parameters and main results.

3 Using the GUI

The use of the GUI is often self-explainatory or helped by the tooltips. The MINUTI GUI’s ’memory’ are project
directories: input and output files including data for fit projects are saved here. Each example that shows via
MINUTI -> Show Examples is a project directory. Henceforth, we identify a project with its project directory and
just talk about the project.

3.1 Open an existing project

There are several possibilities: via MINUTI -> Open...; select an item with extension ’.prc’ in the lower right
directory listing, popupMenu -> Open As Project; via Edit -> Find Project as explained below.

1

• If this fails the location of the MINUTI executables may not be known permanently to your computer. Correct this by modification
of the ’path’ setting in the login resource file in your home directory, usually something like ’.bash profile’, ’.profile’, or
’.login’. If DIR was the installation directory the directory DIR/bin should be part of the ’path’. You have to logout and login
again to update the ’path’ settings.
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3.2 Create a new project

There are two ways to create a new project: copy an existing project and edit it; create a default project and fill in
appropriate values. In the first case, open an existing project as described above. Then use MINUTI -> Save As
to create a new project with identical parameters. In the second case, via MINUTI -> New Project use the project
wizzard to create a new project with default parameters.

3.3 Find a project

Finding MINUTI project on your computer is easy. Select Edit -> Find Project and define your search criteria in
the window that opened. After the search you may select projects from the list to either open them or copy them
as new.

3.4 Fit parameters

Right-click on an entry field to see if the parameter is fitable. If yes then a popup menu allows you to select either
fitting or linking to another fit parameter. The assignment mechanism is different for fit parameters in the sfit
module.

4 The CLI: standard input files

Each MINUTI executable requires a standard input file (SIF). SIFs are plain text files containing no more than
200 characters per line (excess characters will be ignored). Such files are easily edited with text editors such as
emacs, xemacs, textedit, or gedit. Do not use word processing software such as MSword or OpenOffice to edit the
SIFs because such programs may add special characters that would be misinterpreted by a MINUTI executable.

4.1 Syntax rules

The contents of a line in the SIF is ignored if: ’*’ is the first character, ’@’ is the first character, it is empty, or
it is filled with spaces only. Lines starting with ’*’ are comments lines and can be added anywhere in the SIF
to permit the user to make comments and notes in the SIF. Lines starting with ’@’ are substitution directives
and may appear anywhere in the SIF. The type of input line has four parts separated by spaces: ’@’ character,
parameter name, assignment symbol ’:=’, parameter value. The parameter name has a length eight characters or
less and must not contain the ’@’ character. The parameter name directly preceeded by the ’@’ character is then
substituted by its value as defined in the last preceeding substitution directive. Substitution directives are useful if
values are substituted at several locations in the SIF. The use of comment lines and substitution directives in the
SIF is optional.

The remaining lines in the SIF are read and interpreted by the executable in order of their appearance. Each of
these lines has three parts separated by double colons ’::’. The first and the third part contain comments. The
second part contains data. Number values are read format free, e.g., data can be specified as 45 or 45. or 4.5E1
etc. Multiple data values are separated by one or more spaces. The second double colon and the second comment
(the third part of the line) are optional.

4.2 Assigning fit parameters

Modules seos, simx, and sfit also accept a data input file and allow parameter fitting to minimize the weighted
mean-square deviation between calculation and data. Any input parameter may be promoted to a fit parameter by
adding a percent symbol (%) to the beginning of the input line. For example, the bulk modulus parameter in the
following input line

(12) bulk modulus (GPa) : : 160

turns into a fit parameter via

% (12) bulk modulus (GPa) : : 160

6



where the value is now the start value for the fitting procedure. The same outcome can be achieved by use of
substitution directives

% @ BulkMod := 160
. . . . ( othe r l i n e s ) . . . .

(12) bulk modulus (GPa) : : @BulkMod

Fit parameters may be grouped by use of substitution directives

% @ BulkMod := 160
. . . . ( othe r l i n e s ) . . . .

(12) high−sp in bulk modulus (GPa) : : @BulkMod
. . . . ( othe r l i n e s ) . . . .

(15) low−sp in bulk modulus (GPa) : : @BulkMod

4.2.1 Dependent fit parameters

Module sfit for fitting of more general functions supports complicated relationships between parameters. The syntax
has to follow rules accordong to the expr command of the tclsh scripting language. For example, two parameters
that are fitted determine the value of a third parameter

% @ parm1 := 10
% @ parm2 := 3
@ parm3 := @parm1∗exp (@parm2/@parm1)

A parameter that is depedent on other parameters cannot be a fit parameter. All parameters that are used in a
dependent parameter must have been defined beforehand.

4.3 Specifying priors

In multiparameter fits, parameters are often considered to be determined by the data set at hand only. However,
in many cases, previous information is available or a test of the compatibility of the data at hand with a given set
of parameters is of interest. A prior is specified as follows

% (12) bulk modulus (GPa) : : 160 5

where the first value is the prior and the second value is the uncertainty of the prior. The extreme cases of infinitely
large and zero value uncertainty correspond to freely fitted and constant parameters, respectively. The option of
prior specification permits a quantitative test for incompatibility of data with a set of given parameters (for example
from a different experiment). Priors enter the fitting process as for example shown in (30).
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5 Equations-of-state: seos

The seos program calculates the isothermal equation-of-state (EOS) including spin-transition effects with a set of
parameters defined in the standard input file (SIF) and optionally permits fitting of parameters to experimental data.
The EOS is constructed as a sum of Helmholtz free energies for relevant parts of the material under consideration.
The inclusion of spin-transition effects is optional. Line numbers refer to the SIF. The following sections describe the
content of each line of the SIF, the algortihms used to implement the EOS and the fitting procedure. Furthermore
the contents of the output files is explained.

The SIF of the seos executable has at least 14 lines of data. If a spin crossover equation-of-state (EOS) is used at
least 20 lines of data are required. The content of these lines is discussed in order of appearance.

1. Unit formula − two values :
The first value gives the composition of the material in the form A{n}B{m} where A,B are element symbols
and n,m are their abundances in the unit cell. The total number of atoms has to be consistent with the zero-
pressure volume specified (or fitted) in line 11. For example, the high-pressure phase of magnesium-silicate
perovskite with a volume of about 160 Å³ would be specified as Mg{4}Si{4}O{12}. Fractional values for the
abundances are also supported.
The second value is optional and specifies the spin crossover element symbol. For example, the entry
’Fe{1.4}Mg{2.6}O{4} Fe’ gives the composition first and then the element symbol of the spin crossover
element, Fe in this case. If a spin crossover element is specified lines 15-20 must also be specified.

2. Name of measured data file − many values :
The first value gives the name of a measured data file.2 The following values define the assigment of column
numbers in the data file to physical parameters. Each assignment is a combination of one letter and a number,
e.g., P1 or v15. The letter refers to the physical meaning according to Table 1 on page 8. Data in the measured
data file between pressures p1 and p2 may be excluded from fitting by adding the line ’#Mask p1 p2’ to the
file. Several lines of this type may be added to exclude specific regions of data.

letter physical meaning units comment

P pressure GPa required

V volume Å³ required
T temperature K optional
p pressure uncertainty GPa optional

v volume uncertainty Å³ required
t temperature uncertainty K optional

Table 1: Column assignments for seos experimental data input file. The units refer to what is expected from input
data.

3. Output file prefix and options − many values :
The first value gives the prefix for output file names.3 Several output files listed on the top in Tables 2 and
3 are created by default. Output files are plain text files. If option ’,’ is specified csv-formatting is provided.
If option G is specified a header for the xmgrace graphical program is added. Additional output files are
created according to options following the file name prefix. With exception of options F, L, and M, the first
value is the pressure in units of GPa. The second value depends on the option specified, and the third value
is the statistical error of the second value. In cases without spin crossover, the options have physical meaning
according to Table 2 on page 9. Options L and R produce output only if a data file was specified in line 2.
The measured volume output is reduced to the temperature given in line 4. All other output is produced at
the temperature given in line 4. In cases with spin crossover, the options have physical meaning according
to Table 3 on page 10. A detailed description of the procedures used to produce the output is provided in
sections 5.6 on page 18 to 5.20 on page 22.

2The input file is a plain text file containing no more than 300 characters per line (excess characters are ignored). Each line in the
file contains a sequence of data values called columns separated by either spaces, tabs, or commata (csv format). Lines that do not
begin with a number are ignored (after removing leading spaces, tabs, commata).

3Names may be defined either relative to the working directory or absolute: Prefix creates files in the working directory, ../Prefix
creates files in the parent directory, myDir/Prefix creates files in the directory myDir (must exist) in the working directory, /Users/-
data/Prefix creates files in the directory /Users/data (must exist and be writeable).
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option column 1 column 2,3, . . . y units file name

pressure isothermal bulk modulus, K GPa <prefix> bmt.<ext>
pressure adiabatic bulk modulus GPa <prefix> bma.<ext>
pressure pressure derivative, K’ <prefix> bdp.<ext>
pressure temp. derivative dK/dT GPa/K <prefix> bdt.<ext>
pressure seismic velocity, vφ km/s <prefix> smv.<ext>
pressure calculated density, ρ g/cm3 <prefix> dns.<ext>
pressure calculated volume, V Å³ <prefix> vol.<ext>
pressure measured volume Å³ <prefix> vrd.<ext>
pressure normalized fit residuals <prefix> rsd.<ext>
pressure thermal Grüneisen parameter <prefix> tgp.<ext>

a,A pressure temperature, density K, g/cm3 <prefix> dns.3D.gz
<prefix> dns.ppm
<prefix> dns.mbf

pressure temperature, bulk modulus K, GPa <prefix> bmt.3D.gz
<prefix> bmt.ppm
<prefix> bmt.mbf

pressure temperature, unpaired electrons K <prefix> unp.3D.gz
<prefix> unp.ppm
<prefix> unp.mbf

c,C pressure V, K, K’, covariance matrix various <prefix> vkk.csv
pressure ρ, vφ covariance matrix various <prefix> dsv.csv
volume isothermal bulk modulus GPa <prefix> VK/
volume pressure derivative, K’ <prefix> VKp/

isothermal bulk modulus pressure derivative, K’ <prefix> KKp/
density seismic velocity km/s <prefix> dsv/

h,H pressure specific heat kB/atom <prefix> ccv.<ext>
i,I pressure internal energy eV/atom <prefix> int.<ext>
l,L parameter n parameter m variable <prefix> p<n>v<m> eel.<ext>

n-m, normalized, centered <prefix> p<n>v<m> nel.<ext>
m,M f of data F of data GPa <prefix> ffm.<ext>

f of theory F of theory GPa <prefix> fft.<ext>
p,P pressure thermal pressure GPa <prefix> prt.<ext>
t,T pressure thermal expansion 1/K <prefix> thx.<ext>

Table 2: Output options for thermal EOS calculations. <prefix> is the file prefix specified in line 3. The extension
<ext> is either ’csv’ for comma-separated-value files (option ’,’ in line 3) or ’dat’ otherwise.

In addition, the protocol file ’<prefix> ptl.txt’ and, for fits to data, the results file ’<prefix> ite.csv’ are
created.

4. Temperature polynomial − four values :
The first value is required and gives the temperature in units of K. The next three values an are optional and
define a pressure dependent temperature via T (p) = T1 + a1p+ a2p

2 + a3p
3 where T1 is the first value and p

is pressure in units of GPa. If the A-option is specified in line 3 then values two and three are required, and
value four is obsolete. With option A, the first and second value give a temperature range and the third value
the nunber of steps for calculations.

5. Pressure ranges (GPa) − seven values :
The first and second values give the start and end of the pressure range for subsequent calculations. The third
value specifies the number of steps in this range. The second triple of values is optional and applies to the
generation of pressure-dependent error ellipses. If values are provided and output option C is specified the
first and second values give the start and end of the pressure range, and the third value specifies the number
of ellipses to generate in this range. The last value if given specifies the generation of pressure-dependent
error ellipses at α levels of 1, 2, and 3 (see section 5.12 on page 19 for more information).
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option column 1 column 2,3, . . . y units file name
pressure bulk modulus, K GPa <prefix> bmt.<ext>
pressure adiabatic bulk modulus GPa <prefix> bma.<ext>
pressure bulk mod., low-pressure spin state GPa <prefix> bml.<ext>
pressure bulk mod., high-pressure spin state GPa <prefix> bmh.<ext>
pressure rel. spin contr. to bulk mod. % <prefix> bms.<ext>
pressure pressure derivative, K’ <prefix> bdp.<ext>
pressure temp. derivative GPa/K <prefix> bdt.<ext>
pressure seismic velocity, vφ km/s <prefix> smv.<ext>
pressure calculated density, ρ g/cm3 <prefix> dns.<ext>
pressure calculated volume, V Å3 <prefix> vol.<ext>
pressure volume, low-pressure spin state Å3 <prefix> vll.<ext>
pressure volume, high-pressure spin state Å3 <prefix> vlh.<ext>
pressure relative volume, spin only % <prefix> vls.<ext>
pressure measured volume Å3 <prefix> vrd.<ext>
pressure normalized fit residuals <prefix> rsd.<ext>
pressure thermal Grüneisen parameter <prefix> tgp.<ext>

a,A pressure temperature, density K, g/cm3 <prefix> dns.3D.gz
<prefix> dns.ppm
<prefix> dns.mbf

pressure temperature, bulk modulus K, GPa <prefix> bmt.3D.gz
<prefix> bmt.ppm
<prefix> bmt.mbf

pressure temperature, unpaired electrons K <prefix> unp.3D.gz
<prefix> unp.ppm

temperature spin transition pressure GPa <prefix> stp.<ext>
temperature spin transition width GPa <prefix> stw.<ext>

c,C pressure V, K, K’, covariance matrix various <prefix> vkk.csv
pressure ρ, vφ covariance matrix various <prefix> dsv.csv
volume bulk modulus, K GPa <prefix> VK/
volume pressure derivative, K’ <prefix> VKp/

bulk modulus, K pressure derivative, K’ <prefix> KKp/
density seismic velocity km/s <prefix> dsv/

e,E pressure spin entropy kB/atom <prefix> etp.<ext>
f,F pressure spin free energy eV/atom <prefix> fre.<ext>
h,H pressure specific heat kB/atom <prefix> ccv.<ext>
i,I pressure internal energy eV/atom <prefix> int.<ext>

pressure spin internal energy eV/atom <prefix> ins.<ext>
l,L parameter n parameter m variable <prefix> p<n>v<m> eel.<ext>

n-m, normalized, centered <prefix> p<n>v<m> nel.<ext>
m,M f of data F of data GPa <prefix> ffm.<ext>

f of theory F of theory GPa <prefix> fft.<ext>
p,P pressure thermal pressure GPa <prefix> prt.<ext>

pressure spin pressure GPa <prefix> prs.<ext>
s,S pressure spin populations, state n <prefix> <n> ssp.<ext>
t,T pressure thermal expansion 1/K <prefix> thx.<ext>
u,U pressure unpaired electrons <prefix> unp.<ext>
x,X pressure Kβ′ intensity <prefix> xes.<ext>
z,Z pressure (∆−Π) eV <prefix> dpp.<ext>

V/V0 (∆−Π) eV <prefix> dpv.<ext>
pressure free energy landscape meV/atom <prefix> frl.<ext>

Table 3: Output options for spin EOS calculations. <prefix> is the file prefix specified in line 3. The extension
<ext> is either ’csv’ for comma-separated-value files (option ’,’ in line 3) or ’dat’ otherwise.
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6. Reference temperature (K) − one value :
This value specifies the temperature at which the elastic parameters in lines 11-16 are defined. If the reference
temperature and the temperature in line 4 (no polynomial) or temperatures given in a data input file are
identical values in lines 7-9 have no influence on calculations. The search for hysteresis behavior of the spin
EOS is enabled for temperatures defined in line 4 that are smaller than the reference temperature.

7. Debye temperature (K) − one value :
This value specifies the Debye temperature Θ of the material at zero pressure.

8. Debye-Grüneisen parameter − two values :
The first value specifies the Debye-Grüneisen parameter γ0 = (∂ lnΘ/∂ lnV ) at zero pressure. The second
value gives the model for the volume dependence of the Debye-Grüneisen parameter. Specify zero for standard
model γ = γ0(V/V0)

q. Specify one for the Altschuler model γ = γ∞ + (γ0 − γ∞) (V/V0)
q. Specify three for

the Speziale/Jeanloz model γ = γ0 exp[−q/s {1− (V/V0)
s}].

9. Debye-Grüneisen parameter exponents − two values :
The first value specifies the exponent q of the previously selected model. The second value gives γ∞ for the
Altschuler model or s for the Speziale/Jeanloz model.

10. Electron temperature (K) − one value :
This value specifies the characteristic conduction electron temperature Tcon of the material at zero pressure.

11. Electron scaling parameter − one value :
This value specifies the scaling parameter of the electron temperature Γ0 = (∂ lnTcon/∂ lnV ) at zero pressure.

12. Electron scaling parameter exponent − one value :
This value specifies the exponent Q = (∂ ln Γ/∂ lnV ) to determine the volume dependence of the Electron
scaling parameter Γ. This is also expressed as Γ = Γ0(V/V0)

Q .

13. Type of elastic equation-of-state − two values :
The first value specifies the type of EOS for the elastic part of the total EOS. The choices are BM (3rd order
Birch-Murnaghan), BM4 (4th order Birch-Murnaghan), Vinet, log (3rd order logarithmic), log4 (4th order
logarithmic). In case of BM4 or log4, the second value specfies the second pressure derivative of the bulk
modulus at zero pressure in units of GPa−1.

14. Volume at zero pressure (Å³) − one value :
This value specifies the volume of the composition unit given in line 1 at zero pressure and temperature given
in line 6.

15. Bulk modulus at zero pressure (GPa) − one value :
This value specifies the isothermal bulk modulus of the material at zero pressure and temperature given in
line 6.

16. Pressure derivative of bulk modulus at zero pressure (GPa) − one value :
This value specifies the isothermal pressure derivative of the bulk modulus at zero pressure and temperature
given in line 6.

17. Iteration control − three values :
The first value gives the maximum number of iteration steps. The other values are optional. The second
value specifies the Levenberg-Marquardt parameter λ that is used to create a multiplier m to the diagonal
of the second-derivative matrix of the normalized χ2. For iteration step n, the multiplier is given by m =
1 + λ max

[

0, (χ2
n−1 − χ2

n)/χ
2
n

]

. Larger values for λ have a dampening effect and steer the iteration process
toward the gradient method. The Newton method is obtained for λ = 0 which is also the default value. The
third value gives the required relative change of χ2 value for an iteration step to stop the iteration.

The following input lines only need to be specified in the case of a spin crossover. The values in lines 11-13 now
describe the low-pressure phase which for Fe is typically the high-spin region.

18. High-pressure phase, volume at zero pressure (Å³) − one value :
This value specifies the volume of the high-pressure phase at zero pressure.
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19. High-pressure phase, bulk modulus (GPa) − one value :
This value specifies the isothermal bulk modulus of the high-pressure phase at zero pressure and temperature
given in line 6.

20. High-pressure phase, pressure derivative of bulk modulus (GPa) − one value :
This value specifies the isothermal pressure derivative of the bulk modulus of the high-pressure phase at zero
pressure and temperature given in line 6.

21. This line is reserved for future use.

22. Spin transition pressure estimate (GPa) − one value :
This value specifies an estimate of the pressure at which crystal-field splitting ∆ and spin-pairing energy Π
are identical. This is approximately the pressure at which volume collapse becomes noticeable.

23. Spin state energies (∆−Π) − several values :
These values specify the energies of the spin states in units of (∆−Π), the difference of crystal-field splitting ∆
and spin-pairing energy Π. The number of values given also specifies the number of spin states. The following
input lines have to specify the same number of values.

24. Orbital degeneracies − several values :
These values specify the orbital degeneracy for each spin state.

25. Unpaired electrons − several values :
These values specify the number of unpaired electrons for each spin state.

5.1 Thermal Equation of State

The free energy or Helmholtz energy is written as sum of a term describing the elastic deformation Fel and a
temperature-dependent term describing lattice vibrations and conduction electrons

F (V, T ) = Fel(V ) + Fth(V, T )− Fth(V, T0) . (1)

The elastic part of (1) can be selected to be of type Birch-Murnaghan, Vinet, or logarithmic (line 10), and is given
by

• Birch-Murnaghan (3rd order)

Fel(V ) =
9

2
K0V0 f

2 {1 + f (K ′
0 − 4)} with f =

1

2

{

(

V0
V

)2/3

− 1

}

(2)

• Birch-Murnaghan (4th order)

Fel(V ) =
9

2
K0V0 f

2

{

1 + f (K ′
0 − 4) + f2 3

4

(

K0K
′′
0 + (K ′

0 − 4)(K ′
0 − 3) +

35

9

)}

(3)

• Vinet

Fel(V ) =
4K0V0

(K ′
0 − 1)2

{(x− 1) ex + 1} with x =
3

2
(K ′

0 − 1)

{

1−
(

V

V0

)1/3
}

(4)

• logarithmic or natural strain (3rd order)

Fel(V ) =
9

2
K0V0 f

2 {1 + f (K ′
0 − 2)} with f =

1

3
ln

(

V0
V

)

(5)

• logarithmic or natural strain (4th order)
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Fel(V ) =
9

2
K0V0 f

2

{

1 + f (K ′
0 − 2) + f2 3

4
(K0K

′′
0 + (K ′

0 − 2)(K ′
0 − 1) + 1)

}

(6)

In these relations, V0 is the volume at zero pressure (line 14), K0 is the isothermal bulk modulus at zero pressure
(line 15), and K ′

0 is the pressure derivative of the isothermal bulk modulus at zero pressure (line 16), and K ′′
0 is the

second pressure derivative of the isothermal bulk modulus at zero pressure (line 13). All values are assumed at a
reference temperature T0 (line 6). Therefore at the reference temperature the EOS is given by the elastic part only.

The thermal part of the free energy has two contributions, a quasi-harmonic vibrational term and a conduction
electron term that vanishes for insulators

Fth(V, T ) = Fqh(V, T ) + Fcon(V, T ) . (7)

For the quasi-harmonic lattice vibrations, the free energy is expresssed by the phonon density of states

Fth(V, T ) = kBT

∫

ln(2 sinh
ω

2kBT
)D(ω, V ) dω . (8)

The seos program uses the Debye approximation for the phonon density of states which features one volume
dependent parameter, the Debye temperature Θ, and we have for ω ≤ kBΘ

D(ω) =
9

kBΘ

(

ω

kBΘ

)2

. (9)

With this approximation, the free energy of the Debye phonon gas is given by

Fqh(V, T ) = 3kBT ln

(

2 sinh
Θ

2T

)

− kBT I3(
Θ

T
)− 3

8
kBΘ . (10)

with the third-order Debye function

I3(t) =
3

t3

∫ t

0

x3dx

ex − 1
. (11)

The quasi-harmonic pressure now takes the form

pqh(V, T ) = −
(

∂Fqh

∂V

)

T

=
γ

V

(

3kBT I3(
Θ

T
) +

9

8
kBΘ

)

, (12)

where γ = −∂ lnΘ/∂ lnV is the Debye-Grüneisen parameter. The seos program supports several models for its
volume dependence as discussed in section 5.1.1.

For the electrons, the free energy is expresssed as

Fcon(V, T ) =
kBT

2

Tcon(V )
, (13)

where Tcon is the volume dependent electron scaling temperature. The conduction electron pressure now takes the
form

pcon(V, T ) = −
(

∂Fcon

∂V

)

T

=
Γ

V

kBT
2

Tcon
, (14)

where Γ = −∂ lnTcon/∂ lnV is the electron scaling parameter which is expressed in the seos program using a scaling
law

Γ(V ) = Γ0

(

V

V0

)Q

, (15)

where Γ0 (line 11), Q (line 12), and V0 (line 14) are input to the program. The expression for the electron scaling
temperature follows via integration of Γ = −∂ lnTcon/∂ lnV to

Tcon(V ) = Tcon0 exp

[

Γ0 − Γ(V )

Q

]

, (16)

where Tcon0 (line 10) is input to the seos program.

For a given pressure p and temperature T , the volume is calculated by solving the thermal EOS

p = −∂Fel

∂V
+ pth(V, T )− pth(V, T0) with pth(V, T ) = pqh(V, T ) + pcon(V, T ) . (17)
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5.1.1 Grüneisen models

Three models for volume dependence of the Grüneisen parameter are implemented: standard model; Altshuler
model; Speziale-Jeanloz model. For the standard model, the Debye-Grüneisen parameter is expressed using a
scaling law

γ(V ) = γ0

(

V

V0

)q

, (18)

where γ0 (line 8), q (line 9), and V0 (line 14) are input to the program. The expression for the Debye temperature
follows via integration of γ = −∂ lnΘ/∂ lnV to result in

Θ(V ) = Θ0 exp

[

γ0 − γ(V )

q

]

, (19)

where Θ0 (line 7) is input to the seos program.

For the Altshuler model, the Debye-Grüneisen parameter is expressed using a modified scaling law

γ(V ) = γ∞ + (γ0 − γ∞)

(

V

V0

)q

, (20)

where γ0 (line 8),γ∞ (line 9), q (line 9), and V0 (line 14) are input to the program. The expression for the Debye
temperature follows via integration to result in

Θ(V ) = Θ0

(

V

V0

)−γ∞

exp

[

γ0 − γ∞
q

{

1−
(

V

V0

)q}]

, (21)

The Speziale-Jeanloz model uses

γ(V ) = γ0 exp

[

−q0
q1

{

1−
(

V

V0

)q1}]

, (22)

where γ0 (line 8),q0 (line 9), q1 (line 9), and V0 (line 14) are input to the program. The expression for the Debye
temperature has to be numerically integrated

Θ(V ) = Θ0 exp

[

−
∫ V

V0

γ(V )
dV

V

]

. (23)

5.2 Spin Equation of State

The formalism to develop a simple description of additional contributions to the free energy for atoms with spin
states was given before (Sturhahn et al., GRL 2005). Assume a set of spin states described by number of unpaired
electrons ui, volume-dependent energy Ei, and orbital degeneracy gi. The free energy per spin-state atom is then
given by

Fs(V, T ) = −kBT lnZs = −kBT ln

{

∑

i

Gi exp

[

−Ei(V )

kBT

]

}

, (24)

where Gi = gi(1 + ui) are the combined degeneracies, orbital and spin, and Zs is the spin partition function. The
seos program constrains the Ei values as follows: at zero pressure the spin contribution is absorbed in the elastic
free energy; at very high pressure the spin contribution is also absorbed in the elastic free energy but with different
parameters; the Ei values are multiples of the same volume-dependent function, i.e., Ei = ǫiΩ with dimensionless
coefficients ǫi and the difference of crystal-field splitting and spin-pairing energy Ω.

At low pressures, i.e., V ≈ V0, one spin state (for Fe typically the high-spin state) has the lowest energy by far and
Fs = E1 − kBT lnG1 in excellent approximation. At very high pressures, i.e., V ≪ V0, also one spin state (for Fe
typically the low-spin state) has the lowest energy by far and Fs = E2−kBT lnG2 in excellent approximation. The
term that is added to (1) in the seos program is given by

−n kBT lnZs − n (ǫ1Ω(V )− kBT lnG1) , (25)
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where n is the number of spin-state atoms in the volume V0. For low pressures, this term disappears and the EOS
of material behaves as outlined in the previous section. For very high pressures, the EOS behaves similar but with
a different elastic term. This behavior is properly modeled by a difference of crystal-field splitting and spin-pairing
energy Ω that is given in terms of elastic free energies for the low- and high-pressure phases

Ω(V ) = Ω0(T ) +
1

n (ǫ2 − ǫ1)

(

F
(2)
el (V )− F

(1)
el (V )

)

+
kBT ln(G2/G1)

n (ǫ2 − ǫ1)
. (26)

The volume-indepent parameter Ω0 determines the volume at the spin transition which occurs close to Ω = 0, i.e.,
the crystal-field splitting equals the spin-pairing energy. The input parameter transition pressure estimate (line 22)
is used to estimate the transition volume Vtr using the average of the EOS value for low- and high-pressure phases.
The estimated transition volume is then used to calculate Ω0 in (26) resulting in

Ω(V ) =
1

n (ǫ2 − ǫ1)
(δFel(V )− δFel(Vtr)) , (27)

where δFel = F
(2)
el − F

(1)
el . The spin pressure needed for the spin EOS is now calculated as

ps(V, T ) = −
(

∂Fs

∂V

)

T

=
1

(ǫ2 − ǫ1)

(

∂F
(2)
el

∂V
− ∂F

(1)
el

∂V

) (

ǫ1 − Z−1
s

∑

i

Giǫi exp

[

− ǫiΩ(V )

kBT

]

)

(28)

Spin-state specific parameters that are specified in the SIF are: zero-pressure volume of the high-pressure phase
(line 18); isothermal bulk modulus at zero pressure of the high-pressure phase (line 19); pressure derivative of the
isothermal bulk modulus at zero pressure of the high-pressure phase (line 20); transition pressure estimate (line
22); spin-state energies ǫi (line 23); spin-state orbital degeneracies (line 24); spin-state unpaired electrons (line 25).

For a given pressure p and temperature T , the volume is calculated by solving the spin EOS

p = −∂F
(1)
el

∂V
+ pth(V, T )− pth(V, T0) + ps(V, T ) . (29)

5.3 Parameter fitting

Input data (EIF given in line 2) are specified as N sets {pi, Vi, Ti, δpi, δVi, δTi} consisting of pressure, volume,
temperature, and their uncertainties. The EOS is fitted to these data by variation of n parameters {xj} by
minimizing the normalized mean-square deviation (method of weighted least squares)

χ2 =
1

(N + p− n)

{

N
∑

i=1

wi (Vi − V (pi, Ti, {xj}))2 +
N

n

p
∑

k=1

(xk −Xk)
2

δ2Xk

}

with N + p− n > 0 . (30)

Some number p of the fit parameters may have priors Xk with uncertainties δXk. The weights wi are determined
by uncertainties of the data via

w−1
i = δ2Vi +

(

∂V

∂p

)2

T

δ2pi +

(

∂V

∂T

)2

p

δ2Ti = δ2Vi + V 2
i

(

δ2pi
K2

i

+ α2
i δ

2Ti

)

, (31)

where Ki and αi are bulk modulus and thermal expansion calculated from the EOS at {pi, Ti}, respectively. If
data and priors constrain the fit parameters reasonably well a solution with minimal χ2 is obtained. These optimal
parameters have errors δxj related to data variation and prior uncertainties. The errors are estimated as variances
(square errors) by

δxj =
√
σjj with σjj′ = χ2

min

[

N
∑

i=1

wi
∂V (pi, Ti)

∂xl

∂V (pi, Ti)

∂xl′
+ δll′

N

n

1

δ2Xl

]−1

jj′

, (32)
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where σjj′ is the covariance matrix and [. . . ]−1 denotes matrix inversion. The derivatives are calculated with the
optimal parameters. The fit-parameter correlation matrix is given by

cjj′ =
σjj′√
σjjσj′j′

. (33)

The variance of a function F of the fit parameters is calculated as

δ2F ({xj}) =
n
∑

jj′=1

σjj′
∂F

∂xj

∂F

∂xj′
, (34)

5.3.1 Fisher information

Fit parameters can be highly correlated leading to overinterpretation of data. The Fisher-information matrix can
help identify parameters that a weekly defined by the data. In the context of the minimum χ2 as maximum
likelyhood estimator, the Fisher information is calculated as

Ijj′ =
√
σjjσj′j′

∂2χ2

∂xj∂xj′
, (35)

where parameter values are obtained by minimizing χ2 . The smallest eigenvalues of the Fisher information matrix
indicate fit parameter combinations that are least important for minimizing χ2 . An individual fit parameter xk is
tested by calculating a modified covariance matrix

σ′
jj′ = χ2

min

[

N
∑

i=1

wi
∂V (pi, Ti)

∂xl

∂V (pi, Ti)

∂xl′
+ δll′

1

δ2Xl
+ δlkδl′k

λk
σkk

]−1

jj′

, (36)

where λk = 20000 basically fixes the parameter. The modified Fisher information matrix is then

I ′jj′ =
√

σ′
jjσ

′
j′j′

∂2χ2

∂xj∂xj′
+ δjkδj′kλk . (37)

If fit parameter xk is only weakly determined by the data the smallest eigenvalues of the modified Fisher information
matrix are significantly larger than the smallest eigenvalues of the full Fisher information matrix given in (35).

5.3.2 Temperature errors

Equation (31) includes temperature errors provided in the data set. These temperature errors are often estimated,
and seos performs an estimate of what these errors should be to be consistent with the fit to the data set. The
volumes V (pi, Ti) are calculated from the data {pi, Vi, Ti} with the optimized fit parameters. In accordance with
uncertainties in the data, the differences ∆Vi = Vi − V (pi, Ti) do not vanish. Now we assume that the deviation is
caused solely by incorrect temperature values. The temperature corrections ∆T±

i that satisfy

Vi − V (pi, Ti ±∆T±
i ) = 0 (38)

should then be comparable to the provided temperature errors. Here the following averages are calculated for
comparison

∆T =
1

4

√

〈(∆T+ −∆T−)2〉 − 〈∆T+ −∆T−〉2 and δT = 〈δT 〉 , (39)

where 〈. . . 〉 are averages over all data points. The values of ∆T and δT should not deviate significantly from each
other. Otherwise incorrectly specified temperatures or temperature errors can be suspected.
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5.4 Bulk modulus

The isothermal bulk modulus is calculated by direct differentiation of the EOS

K(p, T ) = −
(

∂p

∂ lnV

)

T

. (40)

The bulk modulus in the low-pressure and high-pressure states is calculated from (17) with corresponding elastic
parameters, respectively.

The relative spin contribution to the bulk modulus is calculated as

Ks

K −Ks
=

(

∂ps
∂ lnV

)

T

(

∂(p− ps)

∂ lnV

)−1

T

. (41)

The seismic velocity is calculated via

vφ(p, T ) =
√

(1 + γthαT )K V/m0 , (42)

where m0 is the mass contained in the cell volume V0 , and α is the thermal expansion coefficient of (67). The
thermal Grüneisen parameter is calculated as

γth = αK V
1

cV
, (43)

with specific heat cV of (53). The pressure derivative of the bulk modulus is calculated as

K ′ =

(

∂K

∂p

)

T

= K2

(

∂2 lnV

∂p2

)

T

. (44)

The temperature derivative of the bulk modulus is calculated as

(

∂K

∂T

)

p

= K2

(

∂α

∂p

)

T

, (45)

where the thermal expansion α is obtained from (67).

If fit parameters are defined the variances are calculated using (34) with the derivatives

1

K

∂K

∂xj
=

1

V

∂V

∂xj
+
K

V

∂

∂p

(

∂V

∂xj

)

(46)

and
∂K ′

∂xj
= (K ′ + 1)

{

1

V

∂V

∂xj
+

2K

V

∂

∂p

(

∂V

∂xj

)}

+
K2

V

∂2

∂p2

(

∂V

∂xj

)

(47)

and
1

vφ

∂vφ
∂xj

=
1

V

∂V

∂xj
+

K

2V

∂

∂p

(

∂V

∂xj

)

. (48)

All partial derivatives are taken at constant temperature.

5.5 Volume

The volume V is calculated based on the EOS, (29), for various pressures and temperatures as specfied in the
SIF. The volume in the low-pressure and high-pressure states is calculated from (17) with corresponding elastic
parameters, respectively. The relative spin contribution to the volume is calculated as

δs =
V (p)− V (p− ps)

V (p− ps)
. (49)

17



If fit parameters are defined the temperature reduced volumes Vri are calculated from the data {pi, Vi, Ti} as

Vri = Vi − V (pi, Ti) + V (pi, T0) , (50)

where T0 is the reference temperature specified in line 6 of the SIF. A plot of V (pi, T0) and Vri versus pressure
provides an easy visual assessment of deviations between data and model.

The density is derived from the calculated volume as ρ(p) = ρ0V0/V (p). The density at zero pressure, ρ0, is
calculated from the unit formula defined in line 1 of the SIF.

After successful optimization of χ2 given by (30) the residuals consists of pairs {pi,
√
wi(Vi − V (pi, Ti))} calculated

for the optimal parameters. The weights wi are given by (31).

5.6 p-T array (option A)

The ouput file with extension ’ dns.3D’ contains four columns of numbers: normalized pressure; normalized tem-
perature; normalized density; density. The ouput file with extension ’ bmt.3D’ contains four columns of numbers:
normalized pressure; normalized temperature; normalized isothermal bulk modulus; isothermal bulk modulus. The
ouput file with extension ’ unp.3D’ contains four columns of numbers: normalized pressure; normalized tempera-
ture; normalized unpaired electrons; unpaired electrons. The normalization is a linear map from [min,max]→ [0,1].
These files can for example be visualized with the VisIt software of Lawrence Livermore National Laboratory.

Files with the extension ’mbf’ are binary containing the same arrays as above. The binary stream is

byte s type meaning
80 char f i l e magic and de s c r i p t i o n
8 f l o a t double prec P min
8 f l o a t double prec P max
4 s igned i n t e g e r N P
8 f l o a t double prec T min
8 f l o a t double prec T max
4 s igned i n t e g e r N T
8∗N P f l o a t double prec va lue s f o r P min . . . P max at T min
. . .
8∗N P f l o a t double prec va lue s f o r P min . . . P max at T max

The files with extension ’ppm’ are images with same content as above. The values of density, isothermanl bulk
modulus, and unpaired electrons are color-coded. The color scale is selected by an integer N appended to the output
option as ’a N’. Values of N range between 0 and 21. Even values give unmodulated and odd values modulated
color scales. The modulation can enhance variations for small intensities. Values 0 and 2 correspond to gray and
inverse gray, respectively. The next values select Imola, Bamako, Oslo, Hawaii, Acton, and Batlow scales which are
adapted from Fabio Crameri. Then follow Inferno, Kindlmann, and Rainbow scales.

The spin transition pressure and width are determined for each temperature from the 50 % and 20/80 % level of the
unpaired electrons, respectively. At high temperatures these levels might lie outside the specified pressure range.
Then the corresponding values for transition pressure and width are omitted from the output data.

5.7 Covariance matrix (option C)

The pressure dependent covariance matrix of volume, bulk modulus, and pressure derivative of the bulk modulus
is calculated with parameter derivatives given by Eqs. 46 and 47 inserted into Eq. 34.

In addition, the pressure dependent covariance matrix of density and seismic velocity is calculated with parameter
derivatives given by ∂ρ/∂xj = −ρ ∂ lnV/∂xj and Eq. 48 inserted into Eq. 34.

These covariances are used to calculate pressure-dependent error ellipses using the procedure outlined in section
5.12 on the next page.

5.8 Spin entropy (option E)

The spin entropy per spin-state atom is calculated from the spin partition function given in (24) according to

Ss(V, T ) = kB

(

lnZs +
∂ lnZs

∂ lnT

)

=
1

T
{Fs(V, T )− Us(V, T )} , (51)

where Fs and Us are spin free energy and spin internal energy, respectively. See also Eqs. (52) and (54).
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5.9 Spin free energy (option F)

The spin Helmholtz free energy per spin-state atom is calculated from the spin partition function given in (24) and
energies given by (26) according to

Fs(V, T ) = −kBT ln

{

∑

i

Gi exp

[

− 1

kBT

ǫi
n (ǫ2 − ǫ1)

(δFel(V )− δFel(Vtr))

]

}

. (52)

5.10 Specific heat (option H)

The specific heat at constant volume is calculated as the temperature derivative of (55) while keeping the volume
V unchanged

cV (V, T ) =

(

∂

∂T

{

Us(V, T ) + 3kBT I3(
Θ(V )

T
) +

kBT
2

Tcon

})

V

. (53)

5.11 Internal energy (option I)

The spin internal energy per spin-state atom is calculated from the spin partition function given in (24) and energies
given by (26) according to

Us(V, T ) = −kBT
∂ lnZs

∂ lnT

= kBT Z
−1
s

∑

i

Giǫi exp

[

− 1

kBT

ǫi
n (ǫ2 − ǫ1)

(δFel(V )− δFel(Vtr))

]

. (54)

The total internal energy is obtained by addition of elastic and thermal contributions

U(V, T ) = F
(1)
el (V ) + Us(V, T ) + 3kBT I3(

Θ(V )

T
) +

kBT
2

Tcon(V )
, (55)

where the Debye integral I3(Θ/T ), the Debye temperature Θ(V ), and the conduction electron temperature Tcon(V )
are given by Eqs. (11), (19), (21), (23), and (16), respectively.

5.12 Error ellipse (option L)

The error ellipsoid is defined as the hypersurface for which χ2 = (1 + α)χ2
min. where α > 0 determines the

probability that the area of the ellipsoid contains the true parameter values. The error ellipse is a visualization
of the correlation between two parameters. They are based on an expansion of χ2 near its minimal value. With
optimal parameter values xj we may write for small deviations |hj | ≪ 1

χ2((1 + hj)xj) = χ2
min +

1

2

n
∑

jj′=1

hjhj′ xjxj′
∂2χ2

∂xj∂xj′

= χ2
min + χ2

min

n
∑

jj′=1

hjhj′ Djj′ . (56)

The matrix Djj′ is symmetric and approximated by

Djj′ =
xjxj′

χ2
min

{

N
∑

i=1

wi
∂V (pi, Ti)

∂xj

∂V (pi, Ti)

∂xj′
+ δjj′

1

δ2Xj

}

= xjxj′ [σ]
−1
jj′ , (57)
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where [σ]−1 is the inverse of the covariance matrix. With χ2 = (1+α)χ2
min the equation defining the error ellipsoid

is obtained
n
∑

jj′=1

hjhj′ Djj′ = α2 . (58)

Visualization is afforded by singling out groups of two parameters hl and hl′ . The corresponding reduced 2 × 2
covariance matrix is then used to produce the defining equation for the l,l′ error ellipse

x2l [σ]
−1
ll + 2xlxl′ [σ]

−1
ll′ + x2l′ [σ]

−1
l′l′ = α2 , (59)

where [σ]−1 is the inverse of the reduced covariance matrix. Now we introduce polar coordinates (r, φ) with the
transformation xl =

√
σll α r cosφ and xl′ =

√
σl′l′ α r sinφ to result in

r2 =
1− c2ll′

1− cll′ sin 2φ
, (60)

where cll′ is the correlation parameter defined by (33). The parametric form of the error ellipse follows accordingly

xl = α cosφ

{

σll
(

1− c2ll′
)

1− cll′ sin 2φ

}1/2

and xl′ = α sinφ

{

σl′l′
(

1− c2ll′
)

1− cll′ sin 2φ

}1/2

. (61)

The circumscribing box of this ellipse has the size α
√
σll ×α

√
σl′l′ . The scaling factor α determines the probability

that the area of the ellipse contains the true parameter values. This probability is given by integration of the gaussian
probability distribution over the ellipse area. The result for this two-dimensional case is P (α) = 1 − exp[−α2/2]
and gives 39 %, 86 %, and 99 % for αvalues of 1, 2, and 3, respectively. Here α = 1 is selected to produce a
circumscribing box of size

√
σll ×

√
σl′l′ . Values of 2 and 3 are used for optional pressure-dependent error ellipses.

5.13 f-F plot (option M)

The f-F plot permits a visual quality assessment for an EOS, where a normalized stress is plotted against a finite
strain f. Based on the f-F plot one can often determine the compressional behavior of a material. For the Birch-
Murnaghan EOS, the finite strain and the normalized stress are calculated as

f =
1

2

{

(

V0
V

)2/3

− 1

}

and F =
p

3f(1 + 2f)5/2
. (62)

For the Vinet EOS, the finite strain is the same but the normalized stress is calculated as

F =
p (1 + 2f)1/2

3 (1 + 2f)
(

(1 + 2f)1/2 − 1
) exp

[

− 9 (1 + 2f)1/2

2
(

(1 + 2f)1/2 − 1
)

]

. (63)

For the Logarithmic EOS, the finite strain and the normalized stress are calculated as

f =
1

3
ln

(

V0
V

)

and F =
p

3f(1 + 3f)
exp [−3f ] . (64)

This plot is most commonly used to test a 3rd order Birch-Murnaghan EOS for which one obtains a linear relationship
between F and f with a slope directly related to K ′

0

F = K0

{

1 +
3

2
(K ′

0 − 4) f

}

. (65)

For the other EOS types, the above linear relation is approximate for small values of f .

5.14 Thermal and spin pressure (option P)

The thermal pressure and the spin pressure are calculated according to Eqs. (12) and (28), respectively.
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5.15 Spin state populations (option S)

The probability ηj that spin state j in a particular spin-state atom is occupied is calculated as

ηj = Z−1
s Gj exp

[

− 1

kBT

ǫj
n (ǫ2 − ǫ1)

(δFel(V )− δFel(Vtr))

]

. (66)

5.16 Thermal expansion (option T)

Thermal expansion is calculated according to

α =
1

V

(

∂V

∂T

)

p

= − 1

V

(

∂S

∂p

)

T

. (67)

The entropy S has two contributions, thermal and spin state, and is given by

S(V, T ) = Ss(V, T )− 3kB ln

(

2 sinh
Θ

2T

)

+ 4kB I3(
Θ

T
) + kB

3Θ

2T
+ kB

2T

Tcon
, (68)

where Θand Tcon are Debye and conduction electron temperatures. Ss and I were defined in Eqs. (51) and (11),
respectively. If fit parameters are defined the variance of α is calculated using (34) with the derivative

∂α

∂xj
= − α

V

∂V

∂xj
+

1

V

∂

∂p

(

∂S

∂xj

)

. (69)

5.17 Unpaired electrons (option U)

The expectation value of the number of unpaired electrons 〈u〉 is calculated with the spin-state occupation proba-
bilities in (66) as

〈u〉 =
∑

i

ηiui , (70)

where ui is the number of unpaired electrons in spin state i as defined in line 20 of the SIF.

5.18 Kβ′ intensity (option X)

The intensity of the Kβ′ x-ray emission line depends on the spin-state of the fluorescing atom, e.g., Fe. This intensity
is modeled here by

IK =
∑

i

ηiui
ui + 1

, (71)

where ηi and ui are occupation probability and number of unpaired electrons of spin state i, respectively.

5.19 Crystal field splitting and spin-pairing energy (option Z)

The difference between crystal field splitting and spin-pairing energy is calculated as

∆−Π =
1

n (ǫ2 − ǫ1)
(δFel(V )− δFel(Vtr)) (72)

versus pressure and volume.
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5.20 Free energy landscape (option Z)

For a given temperature, the free energy function

A(V, T ) = pV + Fel(V, T ) + Fth(V, T )− Fth(V, T0) + Fs(V, T ) (73)

describes a surface in p-V space which has local minima along the volume direction. If spin contributions are present
two local minima may occur in the spin transition region under certain conditions, e.g., at low temperature. The
lowest minimum is the thermodynamically stable ground state and is equivalent to the EOS of (29). However, in
practice the system could be kinematically trapped in the larger minimum leading to a hysteresis loop in the EOS.
If two minima exist the free energy function versus volume for several pressures in the spin transition region is
saved.
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6 Melting and diffusion: simx

The simx program either calculates the nuclear forward scattering intensity as a function of temperature for exper-
imental situations using melting induced by Laser heating or simulates the temperature average of nuclear resonant
inelastic x-ray scattering spectra in Laser heating scenarios. The calculations are controlled by a set of parameters
defined in the standard input file (SIF) as outlined below. The program optionally permits fitting of parameters to
experimental melting data.

The SIF of the simx executable has 31 lines of data. The content of these lines is discussed in order of appearance.

1. Peak temperature (K) − one value :
This value gives the peak temperature of the Laser-heated spot.

2. Background temperature (K) − one value :
This value gives temperature of the material away from the heated area.

3. FWHM of profile (µm) − one value :
This value gives the full width at half maximum of the temperature profile created by Laser heating.

4. Shape coefficient of profile − one value :
This value defines the shape of the temperature profile created by Laser heating. The profile is described by
a radially symmetric function of distance r from the point of peak temperature, exp[−(r/w)α], where α is the
shape coefficient and 2w = FWHM/(ln 2)1/α is given by the FWHM specified in line 3.

5. Radial range (µm) − two values :
The first value specifies the range used for calculations involving the temperature profile. If specified as
negative or zero it will be calculated as FWHM/2 · 201/α with FWHM from line 3 and shape coefficient α
from line 4. This is the case for the GUI version. The second parameter specifies the number of steps for
creation of the profile. It is set to 201 in the GUI version.

6. Spectrograph wavelength window (nm) − three values :
The two values specify the wavelength window that is considered for evaluation of the emission spectrum of
the Laser-heated spot. The third value specifies the number of points in this window used for calculations.

7. Spectrograph aperture (µm) − one value :
This value gives the diameter of the aperture placed center on the temperature profile to evaluate the emission
spectrum of the Laser-heated spot.

8. Horizontal offset of x-rays (µm) − one value :
This value gives the horizontal offset of the x-ray focal spot with respect to the temperature profile.

9. Horizontal FWHM of x-rays (µm) − one value :
This value gives the horizontal full width at half maximum of the x-ray focal spot.

10. Horizontal shape coefficient of x-ray profile − one value :
This value defines the horizontal shape of the x-ray profile. The profile is described by a symmetric function
of distance x from the center of the x-ray focal spot, exp[−(x/wh)

αh ], where αh is the shape coefficient and
2wh = FWHM/(ln 2)1/αh is given by the FWHM specified in line 9.

11. Vertical offset of x-rays (µm) − one value :
This value gives the vertical offset of the x-ray focal spot with respect to the temperature profile.

12. Vertical FWHM of x-rays (µm) − one value :
This value gives the vertical full width at half maximum of the x-ray focal spot.

13. Vertical shape coefficient of x-ray profile − one value :
This value defines the vertical shape of the x-ray profile. The profile is described by a symmetric function
of distance y from the center of the x-ray focal spot, exp[−(y/wv)

αv ], where αv is the shape coefficient and
2wv = FWHM/(ln 2)1/αv is given by the FWHM specified in line 12.

14. Transition energy (keV) − one value :
This value gives the nuclear resonant transition energy.
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15. Recoil energy (keV) − one value :
This value gives the recoil energy of the free nucleus. The recoil energy is given by nuclear transition energy
E0 and isotope mass M via E2

0/(2Mc2), where c is the speed of light.

16. Level width (neV) − one value :
This value gives the width of the nuclear excited state.

17. Execute melting simulation − one value :
Enter ’yes’ to perform a melting simulation or fit to melting data. If not ’yes’ then values in lines 18 to 27
are ignored.

18. Simulator engine − one value :
This value is not used at present, but is intended at some point in the future to engage an external program
to perform the calculation of nuclear forward scattered intensity.

19. Lamb-Mössbauer temperature (K) − two values :
The first value gives the Lamb-Mössbauer temperature TLM0 of the material at the start of the temperature
range T0 given in line 25. The second value is optional and gives the temperature derivative of the Lamb-Möss-
bauer temperature T ′

LM . The Lamb-Mössbauer factor is calculated as lnFLM (T ) = −T/(TLM0 + T ′
LM (T −

T0)) .

20. Melting temperature (K) − one value :
This value specifies the melting temperature of the Laser-heated material containing the nuclear resonant
atoms.

21. Self-diffusion constant (m2/s) − one value :
This value specifies the self-diffusion coefficient of the nuclear resonant atom at infinitely large temperature.

22. Activation energy for self-diffusion (melting temperature) − one value :
This value specifies the activation energy ǫ for the self-diffusion process in units of the melting temperature
Tm . The self-diffusion coefficient is then given by D(T ) = D∞ exp[−ǫ Tm/T ] .

23. Effective thickness − one value :
This value specifies the effective thickness4 of the Laser-heated material containing the nuclear resonant atoms
at the start of the temperature range given in line 25.

24. Time integration window (ns) − three values :
The first and second values give the start and end of the time window used for integration of the nuclear
forward scattering signal. The third value specifies the number of steps for the integration.

25. Temperature scan range (K) − three values :
The first and second values give the start and end of temperature range used in the melting scan. The third
value specifies the number of steps for the calculation.

26. Name of measured data file − many values :
The first value gives the name of a measured data file.5 The following values define the assigment of column
numbers in the data file to physical parameters. Each assignment is a combination of one letter and a number,
e.g., T1 or c15. The letter refers to the physical meaning according to Table 4 on page 25. The units refer to
what is expected from input data. Data in the measured data file between temperatures T1 and T2 may be
excluded from fitting by adding the line ’#Mask T1 T2’ to the file. Several lines of this type may be added to
exclude specific regions of data.

27. Iteration control − three values :
The first value gives the maximum number of iteration steps. The other values are optional. The second
value specifies the Levenberg-Marquardt parameter λ that is used to create a multiplier m to the diagonal

4The effective thickness η is defined as the product η = FLMρσ0d , where FLM is the Lamb-Mössbauer factor, ρ is the number
density of the nuclear resonant atoms, σ0 is the nuclear resonant cross section, and d is the physical thickness. The effective thickness
is dimensionless.

5The input file is a plain text file containing no more than 300 characters per line (excess characters will be ignored). Each line in
the file contains a sequence of data values called columns separated by either spaces, tabs, or commata (csv format). Lines that do not
begin with a number are ignored (after removing leading spaces, tabs, commata).
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letter physical meaning units comment

T temperature K required
C signal required
t temperature uncertainty K optional
c signal uncertainty required
s,S thickness scaling optional

Table 4: Column assignments for simx measured data input file.

of the second-derivative matrix of the normalized χ2. For iteration step n, the multiplier is given by m =
1 + λ max

[

0, (χ2
n−1 − χ2

n)/χ
2
n

]

. Larger values for λ have a dampening effect and steer the iteration process
toward the gradient method. The Newton method is obtained for λ = 0 which is also the default value. The
third value gives the required relative change of χ2 value for an iteration step to stop the iteration.

28. Execute NRIXS simulation − one value :
Enter ’yes’ to perform a NRIXS simulation. If not ’yes’ then values in lines 29 to 32 are ignored.

29. Simulator engine − one value :
This value specifies the name of the psth executable. This executable is included in the PHOENIX software
which is also available at https://www.nrixs.com . PHOENIX version 2.1.0 or higher has to be installed for
this simulation to function.

30. Input data file name − four values :
The first value specifies the name of the input data file to be used by the psth executable.6 The file contains
a phonon density of states (DOS) spectrum. The second and third values are optional. They give the column
number of energy values and DOS values, respectively. If given both values must be specified. The defaults
are one and two. The fourth value is optional and specifies the column number of DOS errors. If omitted the
errors are calculated as square-root of the DOS values.

31. Energy range (meV) − three values :
The first and second values give the start and end of the energy range for psth calculations. The third value
specifies the number of steps on this energy scale.

32. This line is reserved for future use.

33. Output file prefix and options − two values :
The first value gives the prefix for output file names.7 The second value is optional. If specified a value of
’,’ provides csv-formatted output files. The value ’G’ produces headers readable by the ’xmgrace’ graphics
program. See Table 5 on page 26 for a summary of created output files. Not all files are created for the same
calculation. File creation depends on input parameters.
In addition, the protocol file ’<prefix> ptl.txt’ and, for fits to data, the results file ’<prefix> ite.csv’ are
created.

6The input file is a plain text file containing no more than 300 characters per line (excess characters will be ignored). Each line in
the file contains a sequence of data values called columns separated by either spaces, tabs, or commata (csv format). Lines that do not
begin with a number are ignored (after removing leading spaces, tabs, commata).

7Names may be defined either relative to the working directory or absolute: Prefix creates files in the working directory, ../Prefix
creates files in the parent directory, myDir/Prefix creates files in the directory myDir (must exist) in the working directory, /Users/-
data/Prefix creates files in the directory /Users/data (must exist and be writeable).
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content column 1 column 2,3 y units file name

contours x-coordinate y-coordinate µm,µm <prefix> con.<ext>
self-diffusion temperature self-diffusion coefficient K,m2/s <prefix> dff.<ext>

intensity distrib. eff. thickness dI/dη NA <prefix> eff.<ext>
reduced data temperature counts,errors K,NA <prefix> exp.<ext>
fitted theory temperature counts K,NA <prefix> fit.<ext>

NRIXS spectrum energy excitation prob. meV,eV−1 <prefix> ixs.<ext>
NFS signal spectrogr. temp. intensity K,Γ <prefix> mls.<ext>
NFS signal peak temp. intensity K,Γ <prefix> mlt.<ext>
fit residuals temperature data-fit K,NA <prefix> rsd.<ext>

time spectrum time intensity ns,Γ/ns <prefix> sms.<ext>
average temp. radius temperature µm,K <prefix> tav.<ext>
temp. profile radius temperature µm,K <prefix> tpr.<ext>

spectrograph temp. radius temperature µm,K <prefix> tsp.<ext>
intensity distrib. temperature dI/dT K,K−1 <prefix> xdt.<ext>

Table 5: Output created by simx calculations. <prefix> is the file prefix specified in line 33. The extension <ext>
is either ’csv’ for comma-separated-value files (option ’,’ in line 33) or ’dat’ otherwise. NA means specification not
applicable.

6.1 Temperature profile

The Laser-heated area on the sample is described by a radially symmetric temperature field

T (r) = Tb + (Tp − Tb)Θ(r) with Θ(r) = exp[−(r/w)α], (74)

with center maximum temperature Tp and background temperature Tb given in lines 1 and 2, respectively. Here α
is the shape coefficient given in line 4, and 2w = FWHM/(ln 2)1/α is given by the FWHM specified in line 3. The
average temperature in a disc of radius R is then given by

T (R) =
2

R2

∫ R

0

rT (r) dr = Tb + (Tp − Tb)
2

R2

∫ R

0

rΘ(r) dr . (75)

6.2 Temperature from spectral analysis

Ideally a segment of the heated sample at a particular temperature T emits black-body radiation described by a
Planck intensity distribution

dP

dAdE dΩ
=

2E3

h3c2

(

exp

[

E

kBT

]

− 1

)−1

, (76)

where dP is the power per energy dE emitted by area dA into solid angle dΩ normal to the area, and kB is the
Boltzmann constant. The Laser-heated area then emits the following power per energy and solid angle into an
aperture of radius R

dP

dE dΩ
=

2E3

h3c2
πR2G(E) with G(E) = 2

∫ 1

0

(

exp
E

kBT (ρR)
− 1

)−1

ρdρ . (77)

This function is fitted to a Planck distribution with temperature TS which is then considered the spectroscopically
measured average temperature inside a disc with radius R. This measured temperature is implicitly given as a
solution of the optimization procedure

∫ E2

E1

dE E6

{

G(E)−A

(

exp

[

E

kBTS

]

− 1

)−1
}2

→ Min(A, TS) , (78)

where A and TS are varied. The spectral range for analysis is determined by E1 and E2 given in line 6. In practice,
the spectral range endpoints are between one and two eV and temperatures involved are typically around 3000 K
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corresponding to energies of about 0.25 eV. Then the exponentials in Eqs. (77) and (78) are large, and we may
approximate

(

exp

[

E

kBT

]

− 1

)−1

≈ exp

[

− E

kBT

]

. (79)

We introduce the parameter β = 1/(kBTS) and rewrite the approximate optimization problem in (78) as follows

Z(β,A) =

∫ E2

E1

dE E6
{

G(E) −A e−βE
}2

with
∂Z

∂β
= 0 ∧ ∂Z

∂A
= 0. (80)

The evaluation of the derivatives gives

∂Z

∂β
= 2A

∫ E2

E1

dE E7 e−βE
{

G(E)−A e−βE
}

∂Z

∂A
= −2

∫ E2

E1

dE E6 e−βE
{

G(E) −A e−βE
}

,

and we obtain the optimal value for TS = 1/(kBβ) by eliminating A from above equations and solving

∫ E2

E1

E7 e−2βEdE

∫ E2

E1

G(E)E6e−βEdE =

∫ E2

E1

E6e−2βEdE

∫ E2

E1

G(E)E7e−βEdE . (81)

The optical aperture of the spectrograph system as specified in line 7 is given by 2R, and the solutions of the
previous equation determine the average temperature obtained by fitting the optical emission spectrum to a Planck
distribution.

6.3 X-ray profile

X-rays incident on the Laser-heated sample are described by a symmetric intensity profile I0P (x, y) peaked at x0, y0
with

P (x, y) =
αhαv

whwvΓ(1/αh)Γ(1/αv)
exp[−|(x− x0)/wh|αh − |(y − y0)/wv|αv ] , (82)

where x0 is the horizontal offset (line 8), 2wh = FWHMh/(ln 2)
1/αh is given by the horizontal FWHM (line 9), and αh

is the horizontal shape coefficient (line 10). In analogy, y0 is the vertical offset (line 11), 2wv = FWHMv/(ln 2)
1/αv

is given by the vertical FWHM (line 12), and αv is the vertical shape coefficient (line 13). The distribution P (x, y)
is area-normalized, and Γ is the gamma function.

The x-ray intensity profile intersects the temperature profile given in (74). For simulations of temperature dependent
x-ray experiments, we need to know the x-ray intensity associated with a given temperature. The radial positions
corresponding to a given temperature T are obtained by inverting (74), i.e., r(T ) = w ln1/α[(Tp − Tb)/(T − Tb)] .
The x-ray intensity integrated over this circle then leads to the normalized intensity distribution according to

X(T ) = −r dr
dT

∫ 2π

0

P (r cosφ, r sinφ) dφ

=
wαr(2−α)

α (T − Tb)

∫ 2π

0

P (r cosφ, r sinφ) dφ . (83)

6.4 Nuclear forward scattering signal

The time-dependent nuclear forward scattering (NFS) intensity or time spectrum of a single-line absorber is given
by

I(t) = I0
ητ

t
J2
1 (
√

ηt/τ) exp[−t/τ ] , (84)
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where J1 is the first-order Bessel function, η is the efffective thickness, and the nuclear lifetime τ = ~/Γ is derived
from the nuclear level width Γ (line 16). The time-integrated NFS intensity is then obtained as

N(T ) =

∫ t2

t1

I(t) dt = I0η(T )τ

∫ t2/τ

t1/τ

J2
1 (
√

η(T )z) e−z dz

z
, (85)

where [t1,t2] is the time window specified in line 24, and the temperature dependence of the effective thickness via
the Lamb-Mössbauer factor is modeled by

η(T ) =

{

η0 exp[− T−T0

TLM0+T ′

LM
(T−T0)

] if T < Tm

0 if T ≧ Tm
. (86)

Here T0 is the start of the temperature range (line 25), η0 and TLM0 are effective thickness and Lamb-Mössbauer
temperature at T0 (lines 23 and 19), respectively, and T ′

LM gives the temperature derivative of the Lamb-Mössbauer
temperature. At the melting temperature Tm, the effective thickness and thus the NFS intensity suddenly drop to
zero.

In case of self-diffusion of the nuclear resonant atoms, the nuclear lifetime τ = ~/Γ in (85) has to be replaced with

τ(T ) =
~

Γ

{

1 +
2E2

0

~c2Γ
D(T )

}−1

, (87)

where E0 is the nuclear resonant transition energy (line 14), and the temperature dependent diffusion constant is
given by

D(T ) = D0 exp

[

−ǫ Tm
T

]

. (88)

Here D0 (line 21) is the self-diffusion constant at infinite temperature, and ǫ (line 22) specifies the activation energy
for the self-diffusion process in units of the melting temperature Tm (line 20).

Finally the time- and temperature-integrated NFS intensity or NFS signal is obtained by combining Eqs. (83) and
(85)

〈N〉 =

∫ Tp

Tb

N(T )X(T ) dT

= I0
wα

α

∫ Tp

Tb

dT
η τ r(2−α)

(T − Tb)

∫ t2/τ

t1/τ

J2
1 (
√
ηz) e−z dz

z

∫ 2π

0

P (r cosφ, r sinφ) dφ , (89)

where r(T ) = w ln1/α[(Tp−Tb)/(T −Tb)] , and the temperature dependences of η and τ are given by Eqs. (86) and
(87), respectively.

6.5 NRIXS signal

Temperature dependent NRIXS spectra are calculated using the psth module of the PHOENIX program package.
PHOENIX version 2.1.0 or higher has to be installed for this calculation to work. For temperature T , the NRIXS
spectrum S(E, T ) is calculated from the given density-of-states g(E) via

S(E, T ) = FLM (T )

{

aR(E) +
∞
∑

n=1

∫

Gn(E
′, T )R(E − E′) dE′

}

(90)

FLM (T ) = exp

[

−ER

∫

g(E)

E
coth

βE

2
dE

]

Gn+1(E) =
1

n+ 1

∫

Gn(E
′)G1(E − E′) dE′

G1(E) =
ER g(E)

E (1 − e−βE)
,
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where ER is the recoil energy (line 15), and β = 1/(kBT ) is the inverse temperature. In the above equations, g(E)
is normalized, i.e.,

∫

g(E)dE = 1 , and g(E) = 0 for E ≦ 0 . The value of a is set to 0.2 , and the resolution function
is given by

R(E) =
α

w Γ(1/α)
exp[−|E/w|α] , (91)

where α = 1.7 and w = 0.62 meV are chosen to produce a reasonable shape and a FWHM of 1 meV.

The temperature average is performed using the x-ray intensity distribution of (83)

〈S(E)〉 =

∫ Tp

Tb

S(E, T )X(T ) dT

=
wα

α

∫ Tp

Tb

dT
FLM (T ) r(2−α)

(T − Tb)

∫ 2π

0

P (r cosφ, r sinφ) dφ × (92)

{

aR(E) +

∞
∑

n=1

∫

Gn(E
′, T )R(E − E′) dE′

}

,

where r(T ) = w ln1/α[(Tp − Tb)/(T − Tb)] ,

6.6 Parameter fitting

For melting runs, Input data (EIF given in line 26) are specified as N sets {Ti, Ci, si, δTi, δCi} consisting of temper-
ature, counts (measured signal), their uncertainties, and effective thickness scaling factor. The NFS signal given by
(89) is fitted to these data by variation of n parameters {xj} by minimizing the normalized mean-square deviation
(method of weighted least squares)

χ2 =
1

(N + p− n)

{

N
∑

i=1

wi (Ci − x1 S(Tp(Ti), siη0, {xj}))2 +
p
∑

k=1

(xk −Xk)
2

δ2Xk

}

. (93)

Here the scaling parameter x1 is always fitted. The peak temperature of the Laser-heated area Tp corresponding
to a measured temperature Ti is obtained by inversion of (81). The effective thickness (line 23) is scaled by the si
where s1 = 1 for T1 as the lowest temperature is enforced. Some number p of the fit parameters may have priors
Xk with uncertainties δXk. The weights wi are determined by uncertainties of the data via

w−1
i = δ2Ci +

(

x1
∂S

∂T

)2

δ2Ti , (94)

where Ki and αi are bulk modulus and thermal expansion calculated from the EOS at {pi, Ti}, respectively. If
data and priors constrain the fit parameters reasonably well a solution with minimal χ2 is obtained. These optimal
parameters have errors related to data variation and prior uncertainties. The errors are estimated as variances
(square errors) by

δ2xj =
√
σjj with σjj′ = χ2

min

[

N
∑

i=1

wi
∂(x1S(Ti, si))

∂xl

∂(x1S(Ti, si))

∂xl′
+ δjj′

1

δ2Xj

]−1

jj′

, (95)

where σjj′ is the covariance matrix and [. . . ]−1 denotes matrix inversion. The derivatives are calculated with the
optimal parameters. The fit-parameter correlation matrix is given by

cjj′ =
σjj′√
σjjσj′j′

. (96)

The variance of a function F of the fit parameters can be calculated as

δ2F ({xj}) =
n
∑

jj′=1

σjj′
∂F

∂xj

∂F

∂xj′
, (97)
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6.6.1 Fisher information

Fit parameters can be highly correlated leading to overinterpretation of data. The Fisher-information matrix can
help identify parameters that a weekly defined by the data. In the context of the minimum χ2 as maximum
likelyhood estimator, the Fisher information is calculated as

Ijj′ =
√
σjjσj′j′

∂2χ2

∂xj∂xj′
, (98)

where parameter values are obtained by minimizing χ2 . The smallest eigenvalues of the Fisher information matrix
indicate fit parameter combinations that are least important for minimizing χ2 . An individual fit parameter xk is
tested by calculating a modified covariance matrix

σ′
jj′ = χ2

min

[

N
∑

i=1

wi
∂V (pi, Ti)

∂xl

∂V (pi, Ti)

∂xl′
+ δll′

1

δ2Xl
+ δlkδl′k

λk
σkk

]−1

jj′

, (99)

where λk = 20000 basically fixes the parameter. The modified Fisher information matrix is then

I ′jj′ =
√

σ′
jjσ

′
j′j′

∂2χ2

∂xj∂xj′
+ δjkδj′kλk . (100)

If fit parameter xk is only weakly determined by the data the smallest eigenvalues of the modified Fisher information
matrix are significantly larger than the smallest eigenvalues of the full Fisher information matrix given in (98).

6.7 Output files

The file prefix specified in line 33 of the SIF is used for output files containing calculation results. Table 5 on page
26 shows a summary of output files created by the simx executable.

6.7.1 Contours

Temperature and x-ray intensity profiles are given by Eqs. (74) and (82), respectively. They are plotted together
as contours on a x-y grid. Also plotted is the spectrograph aperture as a circle with diameter given in line 7 of the
SIF.

6.7.2 X-ray intensity distributions

The temperature-dependent x-ray intensity distribution as given in (83) is provided in the ’ xdt’ file. The ’ eff’ file
contains the effective thickness dependent x-ray intensity distribution defined by

X ′(η) = −r dr
dη

∫ 2π

0

P (r cosφ, r sinφ) dφ

=
η wαr(2−α)x3

αTLM0 ((T0 − Tb)x+ TLM0 ln η0/η)

∫ 2π

0

P (r cosφ, r sinφ) dφ (101)

with x(η) = 1− T ′
LM ln η0/η and

r(η) = w ln1/α
[

(Tp − Tb)/(T0 − Tb +
TLM0

x
ln η0/η)

]

. (102)

6.7.3 Temperature

The ’ tpr’ file contains the radially symmetric temperature profile of the Laser-heated area and is calculated ac-
cording (74). The average temperature in a disc of specified radius is given by (75) and saved in the ’ tav’ file. The
’ tsp’ file contains the temperature of the Laser-heated area as seen by an apertured spectrograph according to (81)
versus the radius of the aperture. It is assumed that the aperture is centered on the temperature profile.
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6.7.4 NFS related

The ’ mlt’ and ’ mls’ files contain the NFS signal calculated by (89) versus peak temperature and spectrographic
temperature, respectively. The ’ sms’ file gives a time spectrum according to (84) with effective thickness and
diffusion coefficient taken at the start temperature T0 specified in line 25 of the SIF.

If experimental data is fitted three additional files are created: the fit result in the ’ fit’ file; the residuals in the
’ rsd’ file; the reduced experimental data in the ’ exp’ file. The latter is different from the input experimental data
only if effective scaling is specified in line 26 of the SIF. The reduced experimental data is calculated as

Yi = Ci + x1 {S(Tp(Ti), siη0, {xj})− S(Tp(Ti), η0, {xj})} . (103)

The ’ ixs’ file contains the temperature averaged NRIXS signal calculated by (92).
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7 Linear mixing model: smix

The smix program takes properties of a set of minerals and tries to match them to target properties.

The SIF of the smix executable has at least 10 lines of data. The content of the 10 input lines is discussed in order
of appearance.

1. Output file prefix and option − two values :
The first value gives the prefix for output file names.8 Generated output files are listed in Table 6. Output
files are plain text files. If option ’,’ is specified csv-formatting is provided. If option G is specified a header
for the xmgrace graphical program is added. A detailed description of the procedures used to produce the
output is provided in sections 5.6 on page 18 to 5.20 on page 22.
In addition, the protocol file ’<prefix> ptl.txt’ and the results file ’<prefix> ite.csv’ are created.

2. Iteration control − four values :
The first value gives the maximum number of iteration steps. The other values are optional. The second
value specifies the Levenberg-Marquardt parameter λ that is used to create a multiplier m to the diagonal
of the second-derivative matrix of the normalized χ2. For iteration step n, the multiplier is given by m =
1 + λ max

[

0, (χ2
n−1 − χ2

n)/χ
2
n

]

. Larger values for λ have a dampening effect and steer the iteration process
toward the gradient method. The Newton method is obtained for λ = 0 which is also the default value. The
third value gives the required relative change of χ2 value for an iteration step to stop the iteration. The fourth
value is either ’yes’ or ’no’ to indicate whether mineral concentration value should be restricted to physical
values in [0,1].

3. Target property names − many values :
A space-separated list of names for the target properties.

4. Target property meaning − many values :
A space-separated list of integers to assign physical meaning to target properties: 0, density (g/cm3); 1,
bulk modulus (GPa); 2, shear modulus (GPa); 3, inverse Bulk modulus (1/GPa); 4, inverse shear modulus
(1/GPa); other, undefined.

5. Target property values − many values :
A space-separated list of values for the target properties.

6. Target property uncertainties − many values :
A space-separated list of uncertainties of values for the target properties.

column 1 column 2 x units y units file name

parameter n parameter m variable variable <prefix> p<n>v<m> eel.<ext>
density P-wave velocity g/cm3 km/s <prefix> vP ds eel.<ext>
density S-wave velocity g/cm3 km/s <prefix> vS ds eel.<ext>

P-wave velocity S-wave velocity km/s km/s <prefix> vS VP eel.<ext>

Table 6: Output options for mineral property mixing calculations. <prefix> is the file prefix specified in line 1.
The extension <ext> is either ’csv’ for comma-separated-value files (option ’,’ in line 1) or ’dat’ otherwise.

From here on each mineral is defined by a block of four input lines. These four lines consist of

1. Mineral name − one values :
The name of the mineral.

2. Mineral property values − many values :
A space-separated list of property values for this mineral.

3. Mineral property uncertainties − many values :
A space-separated list of uncertainties of property values for this mineral.

8Names may be defined either relative to the working directory or absolute: Prefix creates files in the working directory, ../Prefix
creates files in the parent directory, myDir/Prefix creates files in the directory myDir (must exist) in the working directory, /Users/-
data/Prefix creates files in the directory /Users/data (must exist and be writeable).
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4. Mineral property concentration − one values :
The concentration of this mineral in the assemblage.

7.1 Linear mixing

The mixture contains (N + 1) individual minerals. The concentrations pj ≥ 0 of the minerals in the mixture are
normalized by

N+1
∑

j=1

pj = 1 . (104)

The minerals have properties φjk, where j and k number mineral types and properties, respectively. The average
properties are then

〈φk〉 =
N+1
∑

j=1

pjφjk = φN+1,k +

N
∑

j=1

pj (φj,k − φN+1,k) , (105)

where the concentration pN+1 was eliminated by use of (104). The measure for matching these average properties
and the target properties Φk is defined as

M({pj}) =
1

P + L− n

{

P
∑

k=1

wk (〈φk〉 − Φk)
2
+

L
∑

k=1

(pk −Xk)
2

δ2Xk

}

. (106)

where P is the number of properties and n is the number of fitted concentrations. Some number L of the fitted
concentrations may have priors Xk with uncertainties δXk. The weights wk are taken as

wk =



δΦ2
k +

N+1
∑

j=1

p2jδφ
2
jk





−1

, (107)

where δΦ2
k and δφ2jk are the variances of properties Φk and φjk , respectively. Concentration pn is constrained to

physical parameter space by adding the terms αΘ(pn − 1) (pn − 1)2 and αΘ(−pn) p2n to the measure. Here Θ() is
the Heavyside step function, and α = 104 for steep constraints.

The measure (106) depends on N independent concentrations, but the number of properties P that determine the
measure create constraints for the process M → min{pj}. For the smix program, N must be smaller than P + L,
e.g., three target properties allow only two mineral concentrations without priors to be fitted.

The fit procedure is equivalent to that described in 5.3 on page 15 with χ2 replaced with the measure (106).
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8 Sound velocities: svec

The svec program performs sound velocity calculation and averages based on the elastic tensor of a material.

The SIF of the svec executable has 10 lines of data. The content of the 10 input lines is discussed in order of
appearance.

1. Crystal system − one value :
This value defines the symmetry of the unit cell of the material relevant to the elastic tensor. Supported
values are cubic, hexagonal, trigonal, tetragonal, orthorhombic, monoclinic, triclinic.

2. Density (g/cm3) − one value :
This value specifies the density of the material.

3. Elastic constant (GPa) − one value :
This value specifies C11 .

4. Elastic constants (GPa) − two values :
These values specify C21 and C22 .

5. Elastic constants (GPa) − three values :
These values specify C3n with n = 1 . . . 3 .

6. Elastic constants (GPa) − four values :
These values specify C4n with n = 1 . . . 4 .

7. Elastic constants (GPa) − five values :
These values specify C5n with n = 1 . . . 5 .

8. Elastic constants (GPa) − six values :
These values specify C6n with n = 1 . . . 6 .

9. Angle grid − two values :
The first value specifies the number of grid points N for the polar angle θ . The second value is optional
and specifies the number of grid points M for the azimuthal angle ϕ . If the second value is not given then
M = N . The GUI version has three settings: coarse, fine, very fine. Depending on the crystal system they
translate to N,M values.

10. Velocity resolution (km/s) − one value :
This value specifies the size of the velocity bins for the calculation of velocity probability distributions. The
GUI version assigns 0.05, 0.02, or 0.01 to this value for settings coarse, fine, very fine, respectively.

11. name of output file prefix and options − many values :
The first value gives the prefix for output file names.9 Output files are plain text files. If option ’,’ is specified
csv-formatting is provided. If option G is specified a header for the xmgrace graphical program is added.
Output files are created according to options following the file name prefix. With exception of options S, the
first value is the sound velocity in units of km/s. The other values depend on the option specified and their
physical meaning is listed in Table 7 on page 35. Ascii output files created with the S option are compressed
if the ’gzip’ program is available. A detailed description of the procedures used to produce the output is
provided in the following sections.
In addition, the protocol file ’<prefix> ptl.txt’ is created.

9Names may be defined either relative to the working directory or absolute: Prefix creates files in the working directory, ../Prefix
creates files in the parent directory, myDir/Prefix creates files in the directory myDir (must exist) in the working directory, /Users/-
data/Prefix creates files in the directory /Users/data (must exist and be writeable).
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option description units file name

a,A sound velocity probability distribution km/s, (km/s)−1 <prefix> asv.<ext>
l,L probability distribution, longitudinal km/s, (km/s)−1 <prefix> lsv.<ext>
t,T transverse, polar type km/s, (km/s)−1 <prefix> t1v.<ext>

transverse, azimuthal type km/s, (km/s)−1 <prefix> t2v.<ext>
s,S sound velocity surface, longitudinal km/s <prefix> L.3D.gz

azimuthal orthographic projection <prefix> A L.ppm
mercator projection <prefix> M L.ppm
transverse, type 1 km/s <prefix> T1.3D.gz

azimuthal orthographic projection <prefix> A T1.ppm
mercator projection <prefix> M T1.ppm
transverse, type 2 km/s <prefix> T2.3D.gz

azimuthal orthographic projection <prefix> A T2.ppm
mercator projection <prefix> M T2.ppm
seismic velocity km/s <prefix> SV.3D.gz

azimuthal orthographic projection <prefix> A SV.ppm
mercator projection <prefix> M SV.ppm

Table 7: Output options for sound velocity calculations. <prefix> is the file prefix specified in line 11. The extension
<ext> is either ’csv’ for comma-separated-value files (option ’,’ in line 11) or ’dat’ otherwise.

8.1 Sound velocity calculation

Assume Eijkl is the cartesian representation of the fourth-rank elastic tensor of the crystal, and ρ is the density.
For a given propagation direction q = (q1, q2, q3) , sound velocities vs and normalized polarization vectors e(s)(q) =

(e
(s)
1 , e

(s)
2 , e

(s)
3 ) are obtained as solutions of the eigenvalue problem

ρv2se
(s)
i =

∑

jkl

Eijklqjqke
(s)
l i, j, k, l, s = 1 . . . 3 . (108)

For each direction in the crystal, (108) provides three sound velocities and polarization vectors, and the symmetry of
Eijkl assures that the polarization vectors are mutually orthogonal. The elastic constants Cij specified in input lines
3-8 represent the elastic tensor using the condensed Voigt notation, i.e., C11 = E1111 , C12 = E1122 , C13 = E1133 ,
C44 = E1212 , etc.

Sound velocities and their polarization vectors are calculated on a discrete angular grid of spherical coordinates
η = cos θ and ϕ given by

ηn =
n− 1

N − 1
ϕm =

m− 1

M
ϕ0 , (109)

where 1 ≦ n ≦ N , 1 ≦ m ≦M and N M are specified in line 9 of the SIF. The polar angle ranges are determined by
the crystal symmetry specified in line 1 of the SIF: cubic, hexagonal, ϕ0 = π/2 ; orthorhombic, tetragonal, ϕ0 = π ;
trigonal, monoclinic, triclinic ϕ0 = 2π . Using the spherical coordinates, directions of sound waves are expressed by

q1 = sin θn cosϕm q2 = sin θn sinϕm q3 = cos θn . (110)

The propagation direction of q together with the transverse polar and azimuthal unit vectors t1 and t2, respectively,
given by

t1 =





cos θn cosϕm

cos θn sinϕm

− sin θn



 and t2 =





− sinϕm

cosϕm

0



 . (111)

form a reference frame for sound waves. Sound velocities modes are characterized according to the projections of
their polarization vectors onto the basis (q, t1, t2) . The longitudinal sound (or p-wave) is defined by maxs[|q ·e(s)|] ,
Transverse sound (or s-waves) of polar and azimuthal type is defined by maxs[|t1 · e(s)|] and maxs[|t2 · e(s)|] ,
respectively. The N ·M number of velocity values are arranged into probability distributions (or binned). The
probability distribution of sound velocities is calculated as

D(v) =
1

NM δv

∑

v≦v′<v+δv

∑

s

(

a · e(s)(v′)
)2

, (112)
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where δv is the velocity bin size given in line 10 of the SIF, and a ∈ (q, t1, t2) .

8.2 Elastic moduli

The bulk modulus is calculated as

K =





3
∑

ij=1

[

C−1
]

ij





−1

,

where C−1 is the inverse of the elastic constant matrix. Voigt bounds of bulk and shear moduli are calculated as

KV =
1

3
(〈E〉1111 + 2〈E〉1122) GV = 〈E〉2323 ,

where 〈E〉 is the spatial average of the fourth-rank elastic tensor of the crystal. Reuss bounds of bulk and shear
moduli are calculated using the inverse of the spatial average of the fourth-rank compliance tensor 〈E−1〉−1 and
are given by

KR =
1

3

(

[〈E−1〉−1]1111 + 2[〈E−1〉−1]1122
)

GR = [〈E−1〉−1]2323 .

Voigt-Reuss-Hill bounds of the bulk and shear moduli are the averages KV RH = (KV + KR)/2 and GV RH =
(GV +GR)/2 . The universal elastic anisotropy is calculated as

AU =
KV

KR
+ 5

GV

GR
− 6 .

Bounds of the sound velocities are calculated as

vP =

√

1

ρ

(

K +
4

3
G

)

vS =

√

G

ρ
,

where vP and vS are the compressional and shear sound velocities, respectively, and K, G are the respective bounds
of the elastic moduli.

8.3 Sound velocity averages

With the set of sound velocities and polarization vectors calculated using (108) various projected averages of powers
of the p-wave sound velocities are calculated via

〈vαP 〉j =
∑

q,s

(

q · e(s)
)2

(e
(s)
j )2 vαs (q)

{

∑

q,s

(

q · e(s)
)2

(e
(s)
j )2

}−1

,

where the sum is over all polarizations and directions, and α ∈ (−3, 1, 2) . The averages of powers of the s-wave
sound velocities are calculated in analogy using the transverse unit vectors of (111)

〈vαS 〉j =
∑

q,s

(

(

t1 · e(s)
)2

+
(

t2 · e(s)
)2
)

(e
(s)
j )2 vαs (q)

{

∑

q,s

(

(

t1 · e(s)
)2

+
(

t2 · e(s)
)2
)

(e
(s)
j )2

}−1

.

The Debye sound velocity is calculated according to its definition via

vDj =

{

1

3
〈v−3

P 〉j +
2

3
〈v−3

S 〉j
}−1/3

.

Averages over the projections j are obtained by

〈vαP 〉 =
1

NM

∑

q,s

(

q · e(s)
)2

vαs (q) , (113)
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〈vαS〉 =
1

2NM

∑

q,s

(

(

t1 · e(s)
)2

+
(

t2 · e(s)
)2
)

vαs (q) , (114)

vD =

{

1

3
〈v−3

P 〉+ 2

3
〈v−3

S 〉
}−1/3

=

{

1

3NM

∑

q,s

v−3
s (q)

}−1/3

.

The rms values for the sound velocity distributions are obtained in the standard manner as rmsv =
√

〈v2〉 − 〈v〉2 .
Peak and rms seismic sound velocity anisotropies are provided for p- and s-waves as

A
(peak)
P,S =

max vP,S −min vP,S

max vP,S +min vP,S
and A

(rms)
P,S =

√

〈v2P,S〉
〈vP,S〉2

− 1 .

The sensitivity of each sound velocity average with respect to an independent element of the elastic constant matrix
Cij is calculated numerically as the logarithmic derivative, e.g.,

Sij(vD) =
∂ ln vD
∂ lnCij

.

The result of this analysis is given in the protocol file ’<prefix> ptl.txt’.

8.4 Anisotropy corrections

Nuclear resonant and momentum resolved IXS techniques are used to extract aggregate compressional and shear
sound velocities but generally assume elastic isotropy. In isotropic materials, sound propagation is described by the
compressional sound velocity vP and the shear sound velocity vS independent of propagation direction. They are
related to the Debye sound velocity vD by

3

v3D
=

1

v3P
+

2

v3S
. (115)

In addition, we have the following relationship with the seismic velocity vφ originating from the Christoffel equation

v2φ = v2P − 4

3
v2S . (116)

The Debye sound velocity is obtained from nuclear resonant IXS spectra, and the seismic velocity is often derived
from compression data from x-ray diffraction experiments. Studies using momentum-resolved IXS typically measure
the average compressional sound velocity. Eqs. (115) and (116) are then used to extract vP and vS (NRIXS) or vS
(mrIXS). For anisotropic materials, this procedure produces systematic errors which are quantified in the following.

A replacement of (116) can be found by using the averages in Eqs. (113) and (114) with α = 2 in combination with
(108)

〈

v2P
〉

− 4

3

〈

v2S
〉

=
1

ρ

∑

ijkl

Eijkl

〈

qiqjqkql −
2

3
t1,iqjqkt1,l −

2

3
t2,iqjqkt2,l

〉

=
KV

ρ
. (117)

The calculation of the averaged tensor on the right side of this expression is tedious but straightforward with the
result

KV =
1

9

∑

ij

Eiijj i, j = 1 . . . 3 ,

where KV is also the Voigt bound of the bulk modulus.
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8.4.1 Nuclear resonant IXS

In this case, we know the Debye sound velocity vD, the adiabatic bulk modulus K, and the density ρ from ex-

perimental study. We introduce average sound velocities v̄P =
〈

v−3
P

〉−1/3
and v̄S =

〈

v−3
S

〉−1/3
which by definition

satisfy the relation
3

v3D
=

1

v̄3P
+

2

v̄3S
. (118)

Equation (116) then takes the form

v2φ(1 + δK) = (1 + δP )v̄
2
P − 4

3
(1 + δS)v̄

2
S , (119)

where v2φ = K/ρ and the parameters δP,S =
〈

v2P,S

〉

〈

v−3
P,S

〉2/3

− 1 and δK = KV /K − 1 quantify the effects of

averaging over the material-specific velocity distributions. These parameters vanish for isotropic materials. In
addition, δK vanishes for cubic crystal symmetry. If Eqs. (115) and (116) are applied they provide solutions vP
and vS that deviate from the correct values, and we encounter errors ξP and ξS defined by v̄P = (1 + ξP )vP and
v̄S = (1 + ξS)vS . The calculation of the ξ values quantitatively describes the consequence of the elastic anisotropy
on the procedure of sound velocity determination by nuclear resonant IXS. A combination of Eqs. (115), (116),
(118), and (119) gives

γ3
{

(1 + ξP )
−3 − 1

}

+ 2
{

(1 + ξS)
−3 − 1

}

= 0

{

(1 + ξP )
2(1 + δP )− 1

}

− 4

3
γ2
{

(1 + ξS)
2(1 + δS)− 1

}

= α2δK , (120)

where γ = vS/vP and α = vφ/vP . These equations are solved numerically for two situations: the provided bulk
modulus K represents the Voigt or the Reuss bound, respectively. The values for ξP and ξS give the methodological
error resulting from application of Eqs. (115) and (116) to anisotropic materials. The procedure provides us with

an average compression sound velocity defined by v̄P =
〈

v−3
P

〉−1/3
and an average shear sound velocity defined by

v̄S =
〈

v−3
S

〉−1/3
. These values are compared to Voigt or Reuss bounds of aggregate sound velocities described in

section 8.2.

8.4.2 Momentum-resolved IXS

In this case, we assume to know the average compressional sound velocity v̄P = 〈vP 〉, the adiabatic bulk modulus
K, and the density ρ from experimental study. We now introduce the average shear sound velocity v̄S = 〈vS〉 which
satisfies (117) for anisotropic materials

v2φ(1 + δK) = (1 + ǫP )v̄
2
P − 4

3
(1 + ǫS)v̄

2
S , (121)

where v2φ = K/ρ and the parameters ǫP,S =
〈

v2P,S

〉

〈vP,S〉−2−1 and δK = KV /K−1 quantify the effects of averaging
over the material-specific velocity distributions. Again these parameters vanish for isotropic materials. The solution
vS of the isotropic (116) deviates from the correct value of v̄S by a certain amount ηS defined by v̄S = (1 + ηS)vS .
The calculation of ηS quantitatively describes the consequence of the elastic anisotropy on the procedure of sound
velocity determination by momentum-resolved IXS. The combination of (116) and (121) gives the result

ηS =

(

1 + ǫP − γ2(1 + δK)

(1 + ǫS)(1 − γ2)

)1/2

− 1 , (122)

where γ = vφ/v̄P . The correction ηS for the shear velocties is calculated for two situations: the provided bulk
modulus represents either the Voigt or the Reuss limit. The values for ηS give the methodological error resulting
from application of (116) to anisotropic materials. The procedure provides us with an average shear sound velocity
defined by v̄S = 〈vS〉. These values are compared to Voigt or Reuss bounds of aggregate sound velocities described
in section 8.2.
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8.5 Output files

The file prefix specified in line 11 of the SIF is used for output files containing calculation results. Table 7 on page
35 shows a summary of output files created by the svec executable.

8.5.1 Sound velocity distributions (options A, L, T)

The probability distribution for p-waves is calculated using (112) with a = q and saved into the ’ lsv’ file. For
polar-type and azimuthal type s-waves, (112) is used with a = t1 and a = t2 , respectively, and the results are saved
into files ’ tpv’ and ’ tav’. The average sound velocity distribution D(v) = (DP (v) + 2DS(v))/3 is saved into file
’ asv’. In all cases, the probability distributions are normalized as

∫

D(v) dv = 1 .

8.5.2 Sound velocity surfaces (option S)

Sound velocity surfaces are constructed from calculated sound velocities of a particular type (p-wave, s-wave polar
or azimuthal) on an evenly spaced angular grid. They represent sound velocity vectors of a certain type.

The file ’<prefix> L.3D’ contains four columns of numbers: the cartesian coordinates (vP1, vP2, vP3) and the length
|vP | of the longitudinal sound velocity vector. The files ’<prefix> T1.3D’ and ’<prefix> T2.3D’ contain the two
transverse sound velocities in the same manner. The file ’<prefix> SV.3D’ contains seismic velocity values that are

calculated as vφ =
√

v2P − 2(v2Sp + v2Sa)/3 from p-wave sound velocities vP and s-wave sound velocities vSp (polar)

and vSa (azimuthal). The ’.3D’ files are compressed and appear as ’.3D.gz’ files if the ’gzip’ program is available.
These files can for example be visualized with the VisIt software of Lawrence Livermore National Laboratory.

The files with extension ’ppm’ are images with same content as above. The directional dependence of the sound
velocities is mapped onto the images by mercator and azimuthal orthographic projections, respectively. The values
of the sound velocities are color-coded. The color scale is selected by an integer N appended to the output option as
’s N’. Values of N range between 0 and 21. Even values give unmodulated and odd values modulated color scales.
The modulation can enhance variations for small intensities. Values 0 and 2 correspond to gray and inverse gray,
respectively. The next values select Imola, Bamako, Oslo, Hawaii, Acton, and Batlow scales which are adapted
from Fabio Crameri. Then follow Inferno, Kindlmann, and Rainbow scales.
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9 XRD Background Subtraction: sbck

The sbck program takes a stack of XRD 2-theta patterns, determines the background function, and subtracts it
from the input patterns. Within the assumptions of the program, the result is a set of background-less diffraction
patterns that are ready to be analyzed by programs such as GSAS or FullProf. No further background correction
“by hand” should be needed.

The SIF of the sbck executable has at least 14 lines of data. The content of the input lines is discussed in order of
appearance.

1. Output file prefix and options − many values :
The first value gives the prefix for output folder and file names.10 Generated output is listed in Table 8. WIth
the exception of the ppm-formatted image files, all output files are plain text files. If option ’,’ is specified
csv-formatting is provided. If option G is specified a header for the xmgrace graphical program is added. A
detailed description of the procedures used to produce the output is provided in sections 5.6 on page 18 to
5.20 on page 22.In addition, the protocol file ’<prefix> ptl.txt’ is created.

option description units (x,y) file name

b,B background function deg, none <prefix> bkg.<ext>
n,N normalization factor index, 1/intensity <prefix> nrm.<ext>
p,P guide peak position index, deg <prefix> gpp.<ext>

guide peak width index, deg <prefix> gpw.<ext>
guide peak intensity index, intensity <prefix> gpi.<ext>

guide peak mode skewness index, none <prefix> gps.<ext>
guide peak fit quality index, % <prefix> gpq.<ext>

relative guide peak position index, deg <prefix> gpr.<ext>
r,R background-corrected stack deg, intensity <prefix>/*

true background stack deg, intensity <prefix> bck/*
normalized background-corrected stack deg, none <prefix> nrm/*

FullProf formatted stack NA <prefix> fpr/*
s,S background-corrected stack image NA <prefix> stk.ppm

decompressed stack image NA <prefix> sdc.ppm
integrated decompressed stack deg, none <prefix> dci.<ext>

Table 8: Output options for background calculations. <prefix> is the file prefix specified in line 1. The extension
<ext> is either ’csv’ for comma-separated-value files (option ’,’ in line 1) or ’dat’ otherwise.

2. Diffraction angle range − two values :
The 2θ range of the input stack to be used for calculations of the background.

3. Correction angles − two values :
The first value give the skew angle that is applied to the stack. The second value provides a shear angle that
is applied to the stack which is needed for stacks with no or little change of diffraction line positions along
the stack index.

4. Background averaging − five values :
The first value specifies the 2θ interval over which the background function is averaged. A running average is
applied if the second value is not given. If the second value is a non-space character the third value gives the
order of a polynomial that is fitted to the background function and then replaces it, the fourth value gives a
coefficient to overweigh negative deviations, and the fifth value gives a coefficient to straighten the polynomial
curve.

5. Background refinement level − two values :
The first value specifies the level of the normalized background-corrected stack above which peaks are rec-
ognized as such. If this value is zero refinements to normalization factors and background function are not

10Names may be defined either relative to the working directory or absolute: Prefix creates files in the working directory, ../Prefix
creates files in the parent directory, myDir/Prefix creates files in the directory myDir (must exist) in the working directory, /Users/-
data/Prefix creates files in the directory /Users/data (must exist and be writeable).
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applied. If this value is negative refinements to normalization factors and background function are auto-
matically dtermined for each pattern of the stack. The second value is optional and only used in the case
of a positive first value. It specifies the amount of corrective shift that is applied to offset too dominant
negativities. A value of zero leads to the most aggressive background refinement.

6. Image scaling type − two values :
The first value gives the type of scaling used for production of stack images: linear, logarithmic, and natural.
The second value gives the dynamic range in case of the latter two options. Type “natural” implies a scaling
of diffraction intensities by (2θ)2.5 before logarithmic scaling is applied.

7. Image color scale − one value :
This value gives an integer between 0 and 21 to select the color scale for stack images. Even values give unmod-
ulated and odd values modulated color scales. The modulation can enhance variations for small intensities.
Values 0 and 2 correspond to gray and inverse gray, respectively. The next values select Imola, Bamako, Oslo,
Hawaii, Acton, and Batlow scales which are adapted from Fabio Crameri. Then follow Inferno, Kindlmann,
and Rainbow scales.

8. Image stretch factor, stack index − one value :
This value gives a stretch factor for image creation in the direction of the stack index.

9. Image stretch factor, diffraction angle − one value :
This value gives a stretch factor for image creation in the direction of the angle.

10. Guide peak fit range − three values :
The first two values specify the 2θ range in which a guide peak is identified and fitted for each pattern of the
stack. The fitted position of the guide peak is used to generate a decompressed stack. If the third value is
“yes” then the shape of the guide peak is fitted in addition to position, width, and height. To suppress guide
peak fitting omit all three values.

11. Iteration control for guide peak fitting − three values :
The first value gives the maximum number of iteration steps. The other values are optional. The second
value specifies the Levenberg-Marquardt parameter λ that is used to create a multiplier m to the diagonal
of the second-derivative matrix of the normalized χ2. For iteration step n, the multiplier is given by m =
1 + λ max

[

0, (χ2
n−1 − χ2

n)/χ
2
n

]

. Larger values for λ have a dampening effect and steer the iteration process
toward the gradient method. The Newton method is obtained for λ = 0 which is also the default value. The
third value gives the required relative change of χ2 value for an iteration step to stop the iteration.

12. Burst mode − two values :
A first value of yes selects burst mode for which the stack consists of an alternating sequence of patterns from
the cold or heated sample. The second value specifies if the alternating sequence begins with a hot or a cold
pattern. The default is hot, specify “cold” for the other case.

13. Negativity quench − one value :
A value of yes selects a quench of negative intensity values in the background-subtracted output stacks. The
procedure aims at maintaining a smooth background function and tries to avoid peak-shape distortions for
negativities close to diffraction peaks.

14. Name of data files with XRD patterns − many values :
The first value gives the name of a data file. The following values define the assigment of column numbers in
the data file to physical parameters. Each assignment is a combination of one letter and a number, e.g., a1.
The letter refers to the physical meaning: a,A for diffraction angle values; d,D for detector intensity values;
b,B for an optional normalization factor correction. The B option does not pair with a column number but
specifies a value. For example, B0.01 means that the internally determined normalization factor is modified
by 1.01 Automatic file name expansion is supported for a numerical sequence of data file names. For example,
the syntax ’myFile <10-12>.dat’ results in files ’myFile 10.dat’, ’myFile 11.dat’, and ’myFile 12.dat’ to be
read with the same set of assignments. The sequence of XRD patterns as specified here constitutes the stack.
The stack index starts with 1 for the first specified file. Add more lines for additional data files.

41



9.1 Background detection procedure

The central problem that is addressed in the sbck program is to determine and remove the background so we are left
with only the diffraction peaks. The input stack is an array of XRD patterns Ink with a range of diffraction angles
2θk as specified in input line 2 and the stack index n. Each pattern is a sum of diffraction peaks and background,
and our central assumption is that the shape of the background is common to all patterns

Ink = Pnk +AnBk , (123)

where Bk is the background function, and An are normalization factors. The normalization factors are approximated
as

An = (1 + bn)
1

K

∑

k

(Ink − Pnk) ≈ (1 + bn)
1

K

∑

k

Ink , (124)

where K is the number of 2θ angle points, and the normalization corrections bn are specified in input lines 14ff.
The approximation is justified for large backgrounds or weak peaks which occur in experiments with substantial
parasitic scattering from sample containers. The background function is then given by

Bk =
1

An
(Ink − Pnk) , (125)

which expresses our key assumption Eq. (123) as invariance with respect to the stack index. We still do not know
Pnk, but we assume that a given diffraction peak changes its position with changing stack index. This is for example
the case in high-pressure experiments if stack index is equivalent to pressure. Then minn Pnk = 0 and therefore

Bk = min
n

Ink
An

. (126)

The diffraction patterns follow from the background function and the normalization factors

Pnk = Ink −An min
n

Ink
An

. (127)

9.1.1 Normalization refinement

In Eq. (124), we approximated the normalization factors because the diffraction peaks Pnk were unknown. The
direct use of Eq. (127) would be circular, and therefore we clip the normalized diffraction patterns at level α which
is specified in input line 5 to reach a normalization refinement as

A(r)
n = (1 + bn)

1

K

∑

k

{

Ink − Pnk Θ(
Pnk

An
− α)

}

, (128)

where Θ is Heaviside’s step function, and Pnk is obtained via Eq. (127). The refined normalization factors are then
used to obtained the refined diffraction patterns

P
(r)
nk = Ink −A(r)

n min
n

Ink

A
(r)
n

. (129)

9.1.2 Skew angle

Sometimes the background function in Eq. (126) has a small overall dependence on the stack index. This can often
be empirically corrected by skewing the stack via

Ink −→
(

1 + sin ξ
2k −K

K

2n−N

N

)

Ink ,

where K is the number of 2θ angle points, N is the number of patterns in the stack, and ξ is the skew angle specified
in input line 3.
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9.1.3 Shear angle

For stacks that contain patterns without an intrinsic dependence on the stack index the procedure defined in Eq.
(126) does not work because minn Pnk 6= 0. This situation is accommodated by shearing the stack via

I
(S)
nk =

1

2
(In,k+j + In,k−j) with j = (n− 1)

η

∆θ
,

where ∆θ is the step size on the 2θ scale, and η is the shear angle specified in input line 3. If the shear angle is

sufficiently large we can achieve minn P
(S)
nk = 0 leading to

1

2
(Bk+j +Bk−j) = min

n

I
(S)
nk

A
(r)
n

. (130)

We now assume that the background function’s dependence on diffraction angle is weak such that

1

2
(Bk+j +Bk−j) ≈ Bk +

1

2
j2B′′

k ⇒ Bk ≈ min
n

I
(S)
nk

A
(r)
n

, (131)

where B′′
k is the second derivative of the background function. This emphasizes that the shear angle should be

chosen as small as possible but also not too small. The background function obtained this way is then applied to
the unsheared stack.

9.1.4 Background averaging

The background function obtained either from Eq. (126) or Eq. (131) can be averaged using a running average

Bk =
1

2j + 1

k+j
∑

l=k−j

Bl with 2j + 1 =
δ

∆θ
, (132)

where δ is the averaging window specified in input line 4, and ∆θ is the step size on the 2θ scale.

Alternately the background function can be fitted to a polynomial with order specified in input line 4. The fitted
polynomial becomes the new background function. This often looks good to the eye but leads to inferior background
subtraction.

9.1.5 Background refinement

Ideally the normalized diffraction peak pattern given by

pnk =
Ink

A
(r)
n

Ink −min
n

I
(S)
nk

A
(r)
n

(133)

would be clear of all background contributions. In practice, the outlined procedures remove most but not all of the
background. To potentially improve the background subtraction, we create two broadly averaged stacks

Snk =
1

2j + 1

k+j
∑

l=k−j

Θ(α− pnl)Θ(pnl)pnl and Tnk =
1

2j + 1

k+j
∑

l=k−j

Θ(α− pnl)Θ(pnl)
1

pnl
, (134)

where 2j+1 = K/10 with K as the number of 2θ angle points, Θ is Heaviside’s step function, and the cut-off value
α is specified in input line 5. A correction to the background subtraction is then obtained by

p
(r)
nk = pnk − Cnk + β min

k
Cnk with Cnk =

1

2j + 1

k+j
∑

l=k−j

min(Snl,
1

Tnl
) . (135)

This refinement procedure is purely empirical and does not guarantee an improved background subtraction. Its
quality strongly depends of the choice of the cut-off value α. The shift fraction β controls how aggressive the
refinement is applied with a zero-value as most aggressive.
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The cut-off value can be determined automatically using the following procedure. A test value τ for the cut-off
value is chosen and the number of crossings with the normalized diffraction peak pattern is determined

ψ(τ) =
∑

k

Θ(τ − pn,k−1)Θ(pnk − τ) . (136)

The function ψ(τ) is then smoothed, and the position τn of its maximum is determined. The cut-off value is then
set to αn = 1.5 τn. The shift fraction β is set to zero.

9.1.6 Quality assessment

The overall quality of the background subtraction can be assessed qualitatively by visual inspection of the pnk
image. If the image looks uniform the background subtraction still could have been too aggressive leading to many
negative values of pnk. The negativity is quantified by the average negativity

Q0 =
1

q

∑

n,k

Θ(−pnk) pnk with q =
∑

n,k

Θ(−pnk) , (137)

the diluted negativity

Qd =
1

NK

∑

n,k

Θ(−pnk) pnk , (138)

the anisotropy of negativity

Qa =

min

[

M11 +M22,

√

(M11 −M22)
2
+ 4M2

12

]

max

[

M11 +M22,

√

(M11 −M22)
2
+ 4M2

12

] , (139)

and the twist of negativity

Qt = Qa
2M12

|M11 −M22|+
√

(M11 −M22)
2
+ 4M2

12

. (140)

The moments are defined by

M0 =
∑

n,k

Θ(−pnk) pnk (141)

M1 =
1

M0

∑

n,k

nΘ(−pnk) pnk (142)

M2 =
1

M0

∑

n,k

kΘ(−pnk) pnk (143)

M11 =
1

M0N2

∑

n,k

(n−M1)
2
Θ(−pnk) pnk (144)

M22 =
1

M0K2

∑

n,k

(k −M2)
2
Θ(−pnk) pnk (145)

M12 =
1

M0NK

∑

n,k

(n−M1) (k −M2) Θ(−pnk) pnk . (146)

The anisotropy describes the left/right and top/down evenness of the distribution of negative regions of pnk. It is
by definition invariant with respect to the sign of M12 and therefore a mirrored stack gives the same anisotropy
value. On the other hand, the twist quantifies a stack that is not invariant with respect to an individual mirror
operation, but only to an inversion. The twist value is weighted with anisotropy to emphasize its lesser importance
for small anisotropies. The values of anisotropy and twist can be minimized by prudent choices for skew and shear
angles as well as refinement level.
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9.1.7 Negativity quench

After the above options to obtained a well-balanced background subtraction have been exhausted, the remaining
negative values in the background-subtracted patterns can be completely removed with this procedure. The negative
values of a background-subtracted pattern are convoluted with a normalized Gaussian Gk with a rms value of one
degree. The resulting function is subtracted from the background-subtracted pattern, and the procedure is repeated
100 times

p
(j+1)
nk = p

(j)
nk −

∑

k

Gk p
(j)
nk Θ(−p(j)nk ) . (147)

The iteration leads to very small remaining negativities that are set to zero. Due to the convolution and thus
broadening the negativities are re-distributed over the vicinity of negative regions, and the smoothness of the
background function is mostly maintained.

9.2 Guide peak analysis

A diffraction peak in the first pattern of the stack can be selected for fitting. In this way, the change of position,
width, intensity, and shape of this peak can be monitored as a function of the stack coordinate. The guide peak
should be reasonably well isolated from other features in the pattern. The fit range for the peak is selected in input
line 10. The fit function is defined as

f(2θ) = ξ0

{

Θ(ξ1 − 2θ) exp

[

− ln 2

∣

∣

∣

∣

2θ − ξ1
ξ−

∣

∣

∣

∣

η−
]

+Θ(2θ − ξ1) exp

[

− ln 2

∣

∣

∣

∣

2θ − ξ1
ξ+

∣

∣

∣

∣

η+
]}

, (148)

where the full width at half maximum is given by ξ− + ξ+. The parameters ξ1, ξ2, ξ+, and ξ− are always fitted.
Fitting of the shape, parameters η− and η+, is optional and can be selected in input line 10. When shape is not
fitted the fit function defaults to gaussian, i.e., η− = η+ = 2. The fit procedure minimizes the mean square deviation
in the 2θ range defined in input line 10

k2
∑

k=k1

{

p
(r)
nk − f(2θk)

}2

→ min . (149)

The position of the guide peak along the stack index is used to create a “decompressed” stack, a description chosen
from the situation in which the stack index represents pressure. The 2θ values of each pattern in the stack are
scaled with the fitted position of the guide peak

Dnk = p
(r)
nj with j = k

ξ11
ξ1n

. (150)

In the decompressed stack, the position of the guide peak is independent of the stack index. Diffraction peaks
with the same compression behavior also appear at constant 2θ values. Unrelated diffraction peaks, e.g. of another
material, can easily be identified this way.

9.3 Burst mode

XRD experiments with short hot/cold cycles, e.g. Laser heating in combination with diamond anvil cells, are
accommodated with the burst mode setting in input line 12. In this mode, the stack Ink is separated into hot and
cold stacks. The normalization procedure in Eq. (128) is only applied to the cold stack. Two resulting normalization
factors are used to normalize the enclosed hot spectra. The determination of the background function also uses the
cold spectra only and usually requires shearing of the stack as described in section 9.1.3 on page 43. The use of only
the cold stack for these procedures enables the detection of diffuse scattering in the hot patterns which otherwise
might appear alike to background.

9.4 Output files

The amount and content of output files is briefly described in Table 8. Output options specified in input line 1
specify specific files.
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9.4.1 Option B

The normalized background as determined by Eqs. (126), (131), and (132) is saved. It is given as function of the
diffraction angle 2θ.

9.4.2 Option N

The inverse normalization factors 1/A
(r)
n as determined by Eq. (128) are saved. They are given as function of the

stack index.

9.4.3 Option P

This option causes the results of a guide peak fit procedure using fit function Eq. (148) to be saved. It is ignored if
guide peak fitting is disabled. Position, width, intensity, and quality of fit are saved. The width is calculated with
the best-fit function f as the scaled 2θ rms value

w =
2
√
2 ln 2

〈f〉

√

〈4θ2f〉 〈f〉 − 〈2θf〉2 , (151)

where 〈. . . 〉 indicates the sum over the fit range. For a gaussian shape, this value gives the full width at half
maximum. If the shape is fitted the mode skewness gives a measure of the asymmetry of the fitted peak

s =
1

w

{ 〈2θf〉
〈f〉 − ξ1

}

, (152)

where ξ1 is the fitted peak position. The quality is defined as the normalized mean square deviation

Q =

k2
∑

k=k1

{

p
(r)
nk − f(2θk)

}2
(

k2
∑

k=k1

{

p
(r)
nk − 1

2

(

p
(r)
nk1

+ p
(r)
nk2

)

}2
)−1

. (153)

Not converged fits are identified by a quality that is set to -1.

All fit parameters are given as function of the stack index. If burst mode is specified guide peak fitting occurs
separately for hot and cold stacks. Also the relative guide peak position defined as the difference of hot minus cold
peak positions between adjacent patterns is saved.

9.4.4 Option R

The output is sorted into three directories: background corrected stack A
(r)
n p

(r)
nk from Eqs. (128) and (135); nor-

malized background corrected stack p
(r)
nk from Eq. (135); background corrected stack but formatted for the FullProf

XRD refinement software.

9.4.5 Option S

The background corrected stack p
(r)
nk is converted into a color-coded image with vertical and horizontal pixels

representing stack index and 2θ values, respectively. Since often k ≫ n the aspect ratio can be modified by the
stretch factors in input lines 8 and 9. If both stretch factors are one each (k, n) pair is mapped onto one pixel.
The intensity scale type and the color scale given in input lines 6 and 7 specify how the patterns’ intensities are

mapped onto color values. For a logarithmic scale, the lowest value is limited by αmax p
(r)
nk with the dynamic range

α specified in input line 6. For a natural scale, the stack is scaled by (2θ)5/2 before logarithmic scaling is applied.
This will enhance visibility of diffraction peaks at higher angles which are naturally weaker. In the case of linear

scaling, negative values of the stack are enhanced by a factor of 1/min p
(r)
nk and emphasized with a linear red color

scale. This way the distribution of negative values of the stack becomes visible.

In case of guide peak fitting, the decompressed stack is imaged in the same manner. In addition, the decompressed
diffraction patterns are integrated and saved, Dk = 1/N

∑

nDnk using Eq. (150). The rms fluctuation of peak
intensity are provided as error values in the data file.

In case of burst mode operation, hot and cold stacks are combined into single images. Top and bottom halfs of the
images represent hot and cold stacks, respectively.
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10 General function fitting: sfit

The sfit calculates a function specified in the SIF and optionally fits its parameters to a data set.

The SIF of the sfit executable has at least 4 lines of data. Lines 4 and higher contain function specifications. The
content of the input lines is discussed in order of appearance.

1. Input file or range− many values :
The first value gives the name of a measured data file.11 The following values define the assigment of column
numbers in the data file to physical parameters. Each assignment is a combination of one letter and a number,
e.g., X1 or y15. The letter refers to the physical meaning according to X: x-values, Y: y-values, x: x-value
uncertainties, and y: y-value uncertainties. Only the specification for the x-value uncertaintiies is optional.
Data in the measured data file between x-values x1 and x2 may be excluded from fitting by adding the line
’#Mask x1 x2’ to the file. Several lines of this type may be added to exclude specific regions of data.
If the fitrst value is not a data file a calculation is performed. Then first and second value give x-values for
start and end of the calculation range. The third value provide the number of points on an equidistant x-scale.
In case of a XRD pattern calculation or fit the x-values are diffraction angles in degrees.

2. Output file prefix and options − many values :
The first value gives the prefix for output file names.12 Several output files listed on the top in Table 9 are
created by default. Output files are plain text files. If option ’,’ is specified csv-formatting is provided. If
option G is specified a header for the xmgrace graphical program is added. Additional output files are created
according to options following the file name prefix. With exception of option L, the first value is the x-value.
In case of a XRD pattern calculation or fit the x-values are diffraction angles in degrees. The second value
depends on the option specified, and the third value is the statistical error of the second value. In addition,
the protocol file ’<prefix> ptl.txt’ and, for fits to data, the results file ’<prefix> ite.csv’ are created. In case
of a XRD pattern calculation or fit a list of reflections is saved into ’<prefix> xrd.csv’.

option column 1 column 2,3, . . . file name

x-value calculated function values <prefix> fct.<ext>
x-value calculated function with gaussian noise <prefix> nsy.<ext>
x-value input data without masked values <prefix> dat.<ext>
x-value best fit to input data <prefix> fit.<ext>
x-value normalized residuals of best fit <prefix> rsd.<ext>

l,L parameter n parameter m <prefix> p<n>v<m> eel.<ext>
n-m, normalized, centered <prefix> p<n>v<m> nel.<ext>

Table 9: Output options for fits and calculations. <prefix> is the file prefix specified in line 2. The extension
<ext> is either ’csv’ for comma-separated-value files (option ’,’ in line 3) or ’dat’ otherwise. In case of a XRD
pattern calculation or fit the x-values are diffraction angles in degrees.

3. Iteration control − three values :
The first value gives the maximum number of iteration steps. The other values are optional. The second
value specifies the Levenberg-Marquardt parameter λ that is used to create a multiplier m to the diagonal
of the second-derivative matrix of the normalized χ2. For iteration step n, the multiplier is given by m =
1 + λ max

[

0, (χ2
n−1 − χ2

n)/χ
2
n

]

. Larger values for λ have a dampening effect and steer the iteration process
toward the gradient method. The Newton method is obtained for λ = 0 which is also the default value. The
third value gives the required relative change of χ2 value for an iteration step to stop the iteration.

4. Function specification − many values :
The first value specifies the type of function to be added to the total function to be calculated or used for
fitting. Table 10 shows a iist of supported function types and needed parameters. Functions are defined in
sections 10.2 to 10.4.

11The input file is a plain text file containing no more than 300 characters per line (excess characters are ignored). Each line in the
file contains a sequence of data values called columns separated by either spaces, tabs, or commata (csv format). Lines that do not
begin with a number are ignored (after removing leading spaces, tabs, commata).

12Names may be defined either relative to the working directory or absolute: Prefix creates files in the working directory, ../Prefix
creates files in the parent directory, myDir/Prefix creates files in the directory myDir (must exist) in the working directory, /Users/-
data/Prefix creates files in the directory /Users/data (must exist and be writeable).
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function type number of parameters parameters

comb 6 scale, position, period, peak type, FWHM, shape
exponential 6 scale, position, left HWHM & shape, right HWHM & shape
external > 1 name of external executable or script, parameter string
pattern > 6 symgrp, unit cell, peak type, peak parms

polynomial > 1, 6 11 polynomial coefficients, increasing order
power 6 scale, position, left HWHM & shape, right HWHM & shape
sigmoid 3 scale, position, slope
sine 5 scale, position, frequency, phase, damping
voigt 4 scale, position, FWHM, shape

Table 10: List of supported function types.

10.1 Comb function

The comb function type requires five numerical parameters p1 . . . p3 and p5, p6 and is defined as follows

f(x) = p1
∑

j=0

P (x− p2 − j p3, p5, p6) . (154)

The peak function P can be symmetric exponential, symmetric power, or Voigt. In either case, parameters p5 and
p6 are FWHM and shape. The number of peaks considered depends on the period p3 and the calculation range.

10.2 Exponential function

The exponential function type requires six parameters p1 . . . p6 and is defined as follows

f(x) =















p1 exp
[

− ln 2
∣

∣

∣

x−p2

p3

∣

∣

∣

p4
]

for x < p2

p1 exp
[

− ln 2
∣

∣

∣

x−p2

p5

∣

∣

∣

p6
]

for x > p2

. (155)

All parameters are fitable using substitution directives as outlined in section 4.2.

10.3 External function

The external function type requires the name of an executable or script performing the calculation. Parameters fol-
lowing the name declaration are passed as argument list. The sfit module creates a formatted file named ’.ZZapi in’
that contains x-values, one value per line, and calls the external function with argument list. The external function
is expected to provide a formatted file named ’.ZZapi out’ that contains the calculated function values, one value
per line.

The location of the files ’.ZZapi in’ and ’.ZZapi out’ is the location in which sfit was called. The location of the
executable or script follows the rules of path evaluation and can be either referred to with absolute path (starts
with ’/’) or otherwise is searched for in directories provided by the ’PATH’ shell environment.

10.4 Pattern function

The pattern function type requires multiple parameters the numbers of which are interdependent. The first pa-
rameter fllowing the function-type specification is the symmetry group of the material producing the XRD pattern.
Either the symmetry group number or Hermann–Mauguin notation are accepted. For example, group number 198
is equivalent to P213 and has to be given as 198 or P.2 1.3 in the function specification. The next parameters specify
the minimal set of unit cell (see Fig. 1) dimensions and angles which depends on the lattice system belonging to
the symmetry group. Dimensions and angles are expected in units of wavelength and degrees, respectively. The set
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Figure 1: Definition of unit cell parameters. The lengths of the unit cell edges are given by (a,b,c) in units of
wavelength. The angles opposite to edges a,b,c are given by α,β,γ in units of degrees.

of diffraction angles possible in the angle range either specified in line 1 or from a measured data file is calculated
as

2θhkl = arcsin

√

(h′ sinα)2 + (k′ sinβ)2 + (l′ sin γ)2 + 2h′k′ g(α, β, γ) + 2k′l′ g(β, γ, α) + 2h′l′ g(α, γ, β)

1 + 2 cosα cosβ cos γ − cos2 α− cos2 β − cos2 γ
, (156)

with h′ = h/a, k′ = k/b, l′ = l/c, and g(α, β, γ) = cosα cosβ − cos γ. Values for Miller indices hkl are determined
from the symmetry group and the relevant angle range. Non-unique sets of reflections are reduced to one reflection.
The set of unique diffraction angles defines the positions of diffraction peaks in the calculated pattern.

Each reflection is expressed with a peak function specified as first parameter following the unit cell specification.
Supported peak functions are exponential followed by four parameters for and voigt followed by two parameters
defining width and shape in the order given in Table 10.

The peak function type specification and corresponding parameters are followed by a list of values that specify
the intensities of the diffraction peaks. Intensity values are assigned to peaks in ascending order until the list is
exhausted. If the list is short of intensity values intensities of one are assigned to the remaining peaks.

10.5 Polynomial function

The power function type uses up to 11 parameters p1 . . . p11 and is defined as follows

f(x) =

11
∑

n=1

pnx
n . (157)

All parameters are fitable using substitution directives as outlined in section 4.2.

10.6 Power function

The power function type requires six parameters p1 . . . p6 and is defined as follows

f(x) =



















p1

{

1 +
∣

∣

∣

x−p2

p3

∣

∣

∣

p4
}−1

for x < p2

p1

{

1 +
∣

∣

∣

x−p2

p5

∣

∣

∣

p6
}−1

for x > p2

. (158)

All parameters are fitable using substitution directives as outlined in section 4.2.
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10.7 Sigmoid function

The sigmoid function type requires 3 parameters p1 . . . p3 and is defined as follows

f(x) = p1 tanh [−p3 (x− p2)] . (159)

All parameters are fitable using substitution directives as outlined in section 4.2.

10.8 Sine function

The sine function type requires 5 parameters p1 . . . p5 and is defined as follows

f(x) = p1 exp [−p5 (x− p2)] sin [p3 (x− p2) + p4] . (160)

All parameters are fitable using substitution directives as outlined in section 4.2.

10.9 Voigt function

The voigt function type requires 4 parameters p1 . . . p4 and is defined as follows

f(x) = p1

∫

exp[−ξ2]
(g(α) (x− p2)/p3 − ξ)

2
+ α

dξ with α =
√
ln 2 p4 . (161)

where g(α) was empirically determined as

g(α) = 2α+
0.424051

(1 + 0.08806786α)
1.6963 +

1.24391

(1 + 0.08806786α)
8.40126 . (162)

All parameters are fitable using substitution directives as outlined in section 4.2.

10.10 Parameter fitting

Input data (EIF given in line 1) are specified as N sets {xi, yi, δxi, δyi} consisting of x- and y-values and their
uncertainties. The specified total function is fitted to these data by variation of n parameters {pj} by minimizing
the normalized mean-square deviation (method of weighted least squares)

χ2 =
1

(N +m− n)

{

N
∑

i=1

wi (yi − f(xipi))
2
+
N

n

m
∑

k=1

(pk − Pk)
2

δ2Pk

}

with N +m− n > 0 . (163)

Some number m of the fit parameters may have priors Pk with uncertainties δPk. The weights wi are determined
by uncertainties of the data via

w−1
i = δ2yi +

(

∂y

∂x

)2

δ2xi . (164)

If data and priors constrain the fit parameters reasonably well a solution with minimal χ2 is obtained. These
optimal parameters have errors δpj related to data variation and prior uncertainties. The errors are estimated as
variances (square errors) by

δpj =
√
σjj with σjj′ = χ2

min

[

N
∑

i=1

wi
∂y(xi)

∂pl

∂y(xi)

∂pl′
+ δll′

N

n

1

δ2Pl

]−1

jj′

, (165)

where σjj′ is the covariance matrix and [. . . ]−1 denotes matrix inversion. The derivatives are calculated with the
optimal parameters. The fit-parameter correlation matrix is given by

cjj′ =
σjj′√
σjjσj′j′

. (166)

The variance of a function F of the fit parameters is calculated as

δ2F ({pj}) =
n
∑

jj′=1

σjj′
∂F

∂pj

∂F

∂pj′
, (167)
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10.10.1 Fisher information

Fit parameters can be highly correlated leading to overinterpretation of data. The Fisher-information matrix can
help identify parameters that a weekly defined by the data. In the context of the minimum χ2 as maximum
likelyhood estimator, the Fisher information is calculated as

Ijj′ =
√
σjjσj′j′

∂2χ2

∂pj∂pj′
, (168)

where parameter values are obtained by minimizing χ2 . The smallest eigenvalues of the Fisher information matrix
indicate fit parameter combinations that are least important for minimizing χ2 . An individual fit parameter pk is
tested by calculating a modified covariance matrix

σ′
jj′ = χ2

min

[

N
∑

i=1

wi
∂y(xi)

∂pl

∂y(xi)

∂pl′
+ δll′

N

n

1

δ2Pl
+ δlkδl′k

λk
σkk

]−1

jj′

, (169)

where λk = 20000 basically fixes the parameter. The modified Fisher information matrix is then

I ′jj′ =
√

σ′
jjσ

′
j′j′

∂2χ2

∂pj∂pj′
+ δjkδj′kλk . (170)

If fit parameter pk is only weakly determined by the data the smallest eigenvalues of the modified Fisher information
matrix are significantly larger than the smallest eigenvalues of the full Fisher information matrix given in (168).

10.11 Error ellipse (option L)

The error ellipsoid is defined as the hypersurface for which χ2 = (1 + α)χ2
min. where α > 0 determines the

probability that the area of the ellipsoid contains the true parameter values. The error ellipse is a visualization
of the correlation between two parameters. They are based on an expansion of χ2 near its minimal value. With
optimal parameter values pj we may write for small deviations |hj | ≪ 1

χ2((1 + hj)pj) = χ2
min +

1

2

n
∑

jj′=1

hjhj′ pjpj′
∂2χ2

∂pj∂pj′

= χ2
min + χ2

min

n
∑

jj′=1

hjhj′ Djj′ . (171)

The matrix Djj′ is symmetric and approximated by

Djj′ =
pjpj′

χ2
min
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N
∑

i=1
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∂y(xi)

∂pl

∂y(xi)

∂pl′
+ δll′

N

n

1

δ2Pl

}

= pjpj′ [σ]
−1
jj′ , (172)

where [σ]−1 is the inverse of the covariance matrix. With χ2 = (1+α)χ2
min the equation defining the error ellipsoid

is obtained
n
∑

jj′=1

hjhj′ Djj′ = α2 . (173)

Visualization is afforded by singling out groups of two parameters hl and hl′ . The corresponding reduced 2 × 2
covariance matrix is then used to produce the defining equation for the l,l′ error ellipse

x2l [σ]
−1
ll + 2xlxl′ [σ]

−1
ll′ + x2l′ [σ]

−1
l′l′ = α2 , (174)

where [σ]−1 is the inverse of the reduced covariance matrix. Now we introduce polar coordinates (r, φ) with the
transformation xl =

√
σll α r cosφ and xl′ =

√
σl′l′ α r sinφ to result in
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r2 =
1− c2ll′

1− cll′ sin 2φ
, (175)

where cll′ is the correlation parameter defined by (33). The parametric form of the error ellipse follows accordingly

xl = α cosφ

{

σll
(

1− c2ll′
)

1− cll′ sin 2φ

}1/2

and xl′ = α sinφ

{

σl′l′
(

1− c2ll′
)

1− cll′ sin 2φ

}1/2

. (176)

The circumscribing box of this ellipse has the size α
√
σll ×α

√
σl′l′ . The scaling factor α determines the probability

that the area of the ellipse contains the true parameter values. This probability is given by integration of the gaussian
probability distribution over the ellipse area. The result for this two-dimensional case is P (α) = 1 − exp[−α2/2]
and gives 39 %, 86 %, and 99 % for αvalues of 1, 2, and 3, respectively. Here α = 1 is selected to produce a
circumscribing box of size

√
σll ×

√
σl′l′ .

52



11 Command line options

Each of the executables recognizes the following command line options.

- -geometry=<X×Y+U+W> defines the window geometry for the graphical display, width X, height Y, hori-
zontal position U, vertical position W.

- -help display a list of options and exit.

- -infile=<file> use <file> as input file, the default input file is in <name of the module>

- -nographics disable runtime graphics.

- -quiet suppress most screen printout.

- -version display the version number and exit.

- -vtool list supported visualization tools.

- -vtool=<exe> use the executable <exe> as data visualization program.
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