

<u>COherent NUclear Scattering from Single crystals</u>

Software for the evaluation of Synchrotron Mössbauer Spectra

Wolfgang Sturhahn

wolfgang@nrixs.net

Scattering channels:

incoherent

$$|\phi_j^{(i)}\rangle \neq |\phi_j^{(f)}\rangle$$

PHOENIX software

☆ supported since 1995, 29 years
 ☆ tutorials in 2008, 2012, 2014, 2016, 2018

coherent elastic

$$|\Psi_i\rangle = |\Psi_f\rangle$$

CONUSS software

- ☆ supported since 1985, 39 years
- ☆ tutorials in 2005, 2012, 2014, 2016, 2017, 2023

NBS – Nuclear Bragg Scattering

- ☆ introduced in 1985
 - E.Gerdau et al., Phys.Rev.Lett. 54 (1985)
- ☆ uses (pure) nuclear Bragg reflections
- ☆ few applications due to need for high-quality single crystals

E.Gerdau et al., Phys.Rev.Lett. 54 (1985)

https://www.nrixs.com/pdf/nrs_hamburg_2015.pdf

experimental setup

GINRS – Grazing Incidence Nuclear Resonant Scattering

- ☆ introduced in 1991
 - M.Grote et al., Europhys.Lett. 17 (1991)
- ☆ uses specular reflection off thin films containing Mössbauer isotopes
- ☆ applications in magnetism of nano-structures

R.Röhlsberger et al., Phys.Rev. B 67 (2003)

study of spin structures

R.Röhlsberger et al., Phys.Rev.Lett. 89 (2002)

tSMS – time-resolved Synchrotron Mössbauer Spectroscopy (a.k.a. NFS)

- ☆ introduced in 1991 J.Hastings et al., Phys.Rev.Lett. 66 (1991)
- ☆ internal magnetic fields, electric field gradients, isomer shifts
- ☆ applications include magnetic phase transitions, determination of spin & valence states, and melting studies
- ☆ requires appropriate time structure

https://www.nrixs.com/pdf/sms_intro17.pdf

eSMS – energy-resolved Synchrotron Mössbauer Spectroscopy

- ☆ introduced in 1997
 G.V.Smirnov et al., Phys.Rev. B 55 (1997)
- ☆ pure nuclear Bragg reflections create narrow-bandwidth x-ray
- ☆ polarization filtering methods are now developed (see talk by T.S.Toellner)

experimental setup

G.V.Smirnov et al., Phys.Rev. B 55 (1997)

velocity spectrum

tSMS versus eSMS:

- > time structure of storage ring: tSMS requires special timing modes
- statistical quality (inverse relative error) of a measured spectrum

 \succ evaluation capabilities \rightarrow CONUSS

About CONUSS:

developed 1983-1986 by E. Gerdau and W. Sturhahn at the University of Hamburg

- ☆ coherent elastic nuclear and electronic Bragg scattering
- ☆ explain first NRS experiments (Gerdau et al. PRL 54, 1985)
- ☆ FORTRAN code implemented on IBM 360 mainframe (MVS-VM)

improved 1986-today by W. Sturhahn and supported by the University of Hamburg (1986-1993), ESRF (1992), APS (1992-2010), MPI-Halle (2012-2013)

- ☆ forward scattering (SMS a.k.a. NFS) added in 1991
- ☆ ported to Sun UNIX in 1992
- ☆ extended data handling capability (fitting) added in 1996
- ☆ ported to Linux in 2004, to MacOS in 2011
- ☆ grazing incidence scattering (GINS) added in 2015

publications related to CONUSS:

W. Sturhahn and E. Gerdau, Phys. Rev. B 49 (1994) W. Sturhahn, Hyperfine Interact 125 (2000)

More on CONUSS:

- has been used for data evaluation in numerous publications
- distributed under GPL, source code public, evaluations traceable
- can be obtained at https://www.nrixs.com no charge
- > a major upgrade, CONUSS-2.0.0, was released in 2010
 - ☆ simple installation procedure for Linux and MacOS
 - ☆ all previous capabilities of CONUSS
 - ☆ enhanced fit capabilities & run-time graphics
 - new Monte Carlo approach to find fit start-values, explore the parameter space, and perform smart parameter search

CONUSS 2.1.0, 2.1.1, 2.2.0, 2.2.1, 2.3.0 released 2015 to 2023

- ☆ support of grazing incidence geometry
- ☆ input parameter simplifications
- ☆ dual fit mode, absorber scan modes
- ☆ user-defined source profiles
- ☆ kdec module for deconvolution of multi-line source profiles
- ☆ time-domain-interferometry mode

CONUSS-3.0.0 with GUI released 2024

The CONUSS GUI:

software

- ➢ GUI upgrade, CONUSS-3.0.0, supported by Caltech
 - ☆ translates functionality into Tcl/Tk for Unix and MacOS
 - ☆ maintains all previous capabilities of CLI
 - ☆ enhancements of core modules

|--|

CONUSS now supports:

- > all Mössbauer isotopes, user-defined isotope data
- ➢ forward scattering, grazing incidence, and Bragg/Laue reflections
- > no limitations by sample structure
- combined hyperfine interactions
- distributions of hyperfine fields
- orientational distributions (textures)
- Blume-Tjon magnetic hyperfine field relaxation
- full polarization and directional dependences
- thickness effects
- time-resolved Mössbauer spectra (tSMS)
- energy-resolved Mössbauer spectra (eSMS and traditional)
- sample combinations with optional scanning, TDI mode
- \succ time, energy, and angle averaging
- sample thickness distributions
- comparison to experimental data including fitting
- flexible assignment and grouping of fit parameters

CONUSS provides solutions:

problem	program	SIF	example directory
fitting data	kctl	in_kctl	
forward scattering, time spectra		in_kfor	kctl-NFS1, kctl-NFS2
dual fit		in_kfor	kctl-NFS3
forward scattering, energy spectrum		in_kfor	kctl-NFS4
forward scattering, TDI spectrum		in_kfor	m kctl-TDI
Mössbauer spectroscopy		in_kfor	kctl-MBS1, kctl-MBS2
grazing incidence		in_kgin	kctl-GINS
Bragg/Laue diffraction		in_kref	kctl-NBS1, kctl-NBS2
explore parameter space	kmco	in_kmco	
forward scattering or Mössbauer		in_kfor	$\rm kmco-NFS$
grazing incidence		in_kgin	m kmco-GINS
Bragg/Laue diffraction		in_kref	kmco-NBS
calculate spectra			
forward scattering or Mössbauer	kfmf	in_kfor	kfmf-NFS, kfor-NFS
grazing incidence	kgmf	in_kgin	kgmf-GINS, kgmf-GIS
Bragg/Laue diffraction	krmf	in_kref	krmf-NBS1, krmf-NBS2

